
GlusterFS 2.0 User Guide [DRAFT]
January 15, 2008

http://gluster.org/core-team.php
Z Research

mailto:{�am =�ffam def rm{bf}	enbf Z}

This is the user manual for GlusterFS 2.0.
Copyright c© 2008,2007 Z Research, Inc. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the chapter entitled “GNU
Free Documentation License”.

mailto:{�am =�ffam def rm{bf}	enbf Z}

i

Table of Contents

Acknowledgements . 1

1 Introduction . 2
1.1 Contacting us . 2

2 Installation and Invocation. 3
2.1 Pre requisites . 3

2.1.1 FUSE . 3
2.1.2 Patched FUSE . 3
2.1.3 libibverbs (optional) . 3
2.1.4 Bison and Flex . 3

2.2 Getting GlusterFS . 3
2.3 Building . 4
2.4 Running GlusterFS . 4

2.4.1 Server . 4
2.4.2 Client . 5

2.5 A Tutorial Introduction . 6

3 Concepts . 9
3.1 Filesystems in Userspace . 9
3.2 Translator . 9
3.3 Volume specification file . 12

4 Translators . 14
4.1 Storage Translators . 14

4.1.1 POSIX . 14
4.1.2 BDB . 14

4.2 Client and Server Translators . 15
4.2.1 Transport modules . 15

4.2.1.1 TCP . 15
4.2.1.2 IB-SDP . 15
4.2.1.3 ibverbs . 15

4.2.2 Client . 17
4.2.3 Server. 17

4.3 Clustering Translators . 17
4.3.1 Unify . 17

4.3.1.1 ALU . 20
4.3.1.2 Round Robin (RR) . 21
4.3.1.3 Random . 21
4.3.1.4 NUFA . 21
4.3.1.5 Namespace . 22
4.3.1.6 Self Heal. 22

4.3.2 Replicate (formerly AFR) . 22
4.3.2.1 Self Heal. 23
4.3.2.2 File self-heal . 23
4.3.2.3 Directory self-heal . 24

4.3.3 Stripe . 24

ii

4.4 Performance Translators . 25
4.4.1 Read Ahead . 25
4.4.2 Write Behind . 26
4.4.3 IO Threads . 26
4.4.4 IO Cache . 27
4.4.5 Booster . 27

4.5 Features Translators . 27
4.5.1 POSIX Locks . 28
4.5.2 Fixed ID . 28

4.6 Miscellaneous Translators . 28
4.6.1 ROT-13 . 28
4.6.2 Trace . 29

5 Usage Scenarios . 30
5.1 Advanced Striping . 30

5.1.1 Mixed Storage Requirements . 30
5.1.2 Configuration Brief . 30
5.1.3 Preparing GlusterFS Envoronment . 31

6 Troubleshooting . 35
6.1 GlusterFS error messages . 35

6.1.1 Server errors . 35
6.1.2 Client errors . 35

6.2 FUSE error messages . 36
6.3 AppArmour and GlusterFS . 36
6.4 Reporting a bug . 36

6.4.1 General instructions . 36
6.4.2 Volume specification files . 36
6.4.3 Log files . 36
6.4.4 Backtrace . 36
6.4.5 Reproducing the bug . 37
6.4.6 Other information . 37

Appendix A GNU Free Documentation Licence 38
A.0.1 ADDENDUM: How to use this License for your documents 44

Index . 45

Acknowledgements 1

Acknowledgements

GlusterFS continues to be a wonderful and enriching experience for all of us involved.
GlusterFS development would not have been possible at this pace if not for our enthusiastic

users. People from around the world have helped us with bug reports, performance numbers,
and feature suggestions. A huge thanks to them all.

Matthew Paine - for RPMs & general enthu
Leonardo Rodrigues de Mello - for DEBs
Julian Perez & Adam D’Auria - for multi-server tutorial
Paul England - for HA spec
Brent Nelson - for many bug reports
Jacques Mattheij - for Europe mirror.
Patrick Negri - for TCP non-blocking connect.

http://gluster.org/core-team.php (list-hacking@zresearch.com)
Z Research

mailto:list-hacking@zresearch.com
mailto:{�am =�ffam def rm{bf}	enbf Z}

Chapter 1: Introduction 2

1 Introduction

GlusterFS is a distributed filesystem. It works at the file level, not block level.
A network filesystem is one which allows us to access remote files. A distributed filesystem is

one that stores data on multiple machines and makes them all appear to be a part of the same
filesystem.

Need for distributed filesystems
• Scalability: A distributed filesystem allows us to store more data than what can be stored

on a single machine.
• Redundancy: We might want to replicate crucial data on to several machines.
• Uniform access: One can mount a remote volume (for example your home directory) from

any machine and access the same data.

1.1 Contacting us

You can reach us through the mailing list gluster-devel (gluster-devel@nongnu.org).
You can also find many of the developers on IRC, on the #gluster channel on Freenode

(irc.freenode.net).
The GlusterFS documentation wiki is also useful:

http://gluster.org/docs/index.php/GlusterFS

For commercial support, you can contact Z Research at:
3194 Winding Vista Common
Fremont, CA 94539
USA.

Phone: +1 (510) 354 6801
Toll free: +1 (888) 813 6309
Fax: +1 (510) 372 0604

You can also email us at support@zresearch.com.

mailto:gluster-devel@nongnu.org
mailto:{�am =�ffam def rm{bf}	enbf Z}
mailto:support@zresearch.com

Chapter 2: Installation and Invocation 3

2 Installation and Invocation

2.1 Pre requisites

Before installing GlusterFS make sure you have the following components installed.

2.1.1 FUSE

You’ll need FUSE version 2.6.0 or higher to use GlusterFS. You can omit installing FUSE if you
want to build only the server. Note that you won’t be able to mount a GlusterFS filesystem on
a machine that does not have FUSE installed.

FUSE can be downloaded from: http://fuse.sourceforge.net/
To get the best performance from GlusterFS, however, it is recommended that you use our

patched version of FUSE. See Patched FUSE for details.

2.1.2 Patched FUSE

The GlusterFS project maintains a patched version of FUSE meant to be used with GlusterFS.
The patches increase GlusterFS performance. It is recommended that all users use the patched
FUSE.

The patched FUSE tarball can be downloaded from:
ftp://ftp.zresearch.com/pub/gluster/glusterfs/fuse/

The specific changes made to FUSE are:
• The communication channel size between FUSE kernel module and GlusterFS has been

increased to 1MB, permitting large reads and writes to be sent in bigger chunks.
• The kernel’s read-ahead boundry has been extended upto 1MB.
• Block size returned in the stat()/fstat() calls tuned to 1MB, to make cp and similar

commands perform I/O using that block size.
• flock() locking support has been added (although some rework in GlusterFS is needed for

perfect compliance).

2.1.3 libibverbs (optional)

This is only needed if you want GlusterFS to use InfiniBand as the interconnect mechanism
between server and client. You can get it from:

http://www.openfabrics.org/downloads.htm.

2.1.4 Bison and Flex

These should be already installed on most Linux systems. If not, use your distribution’s normal
software installation procedures to install them. Make sure you install the relevant developer
packages also.

2.2 Getting GlusterFS

There are many ways to get hold of GlusterFS. For a production deployment, the recom-
mended method is to download the latest release tarball. Release tarballs are available at:
http://gluster.org/download.php.

If you want the bleeding edge development source, you can get them from the GNU Arch1

repository. First you must install GNU Arch itself. Then register the GlusterFS archive by
doing:

1 http://www.gnu.org/software/gnu-arch/

Chapter 2: Installation and Invocation 4

$ tla register-archive http://arch.sv.gnu.org/archives/gluster

Now you can check out the source itself:
$ tla get -A gluster@sv.gnu.org glusterfs--mainline--3.0

2.3 Building

You can skip this section if you’re installing from RPMs or DEBs.
GlusterFS uses the Autotools mechanism to build. As such, the procedure is straight-forward.

First, change into the GlusterFS source directory.
$ cd glusterfs-<version>

If you checked out the source from the Arch repository, you’ll need to run ./autogen.sh
first. Note that you’ll need to have Autoconf and Automake installed for this.

Run configure.
$./configure

The configure script accepts the following options:� �
--disable-ibverbs

Disable the InfiniBand transport mechanism.

--disable-fuse-client
Disable the FUSE client.

--disable-server
Disable building of the GlusterFS server.

--disable-bdb
Disable building of Berkeley DB based storage translator.

--disable-mod_glusterfs
Disable building of Apache/lighttpd glusterfs plugins.

--disable-epoll
Use poll instead of epoll.

--disable-libglusterfsclient
Disable building of libglusterfsclient
 	

Build and install GlusterFS.
make install

The binaries (glusterfsd and glusterfs) will be by default installed in
/usr/local/sbin/. Translator, scheduler, and transport shared libraries will be
installed in /usr/local/lib/glusterfs/<version>/. Sample volume specification
files will be in /usr/local/etc/glusterfs/. This document itself can be found in
/usr/local/share/doc/glusterfs/. If you passed the --prefix argument to the configure
script, then replace /usr/local in the preceding paths with the prefix.

2.4 Running GlusterFS

2.4.1 Server

The GlusterFS server is necessary to export storage volumes to remote clients (See Section 4.2.3
[Server protocol], page 17 for more info). This section documents the invocation of the GlusterFS
server program and all the command-line options accepted by it.

Chapter 2: Installation and Invocation 5

� �
Basic Options

-f, --volfile=<path>
Use the volume file as the volume specification.

-s, --volfile-server=<hostname>
Server to get volume file from. This option overrides –volfile option.

-l, --log-file=<path>
Specify the path for the log file.

-L, --log-level=<level>
Set the log level for the server. Log level should be one of DEBUG, WARNING,
ERROR, CRITICAL, or NONE.
Advanced Options

--debug Run in debug mode. This option sets –no-daemon, –log-level to DEBUG and –log-
file to console.

-N, --no-daemon
Run glusterfsd as a foreground process.

-p, --pid-file=<path>
Path for the PID file.

--volfile-id=<key>
’key’ of the volfile to be fetched from server.

--volfile-server-port=<port-number>
Listening port number of volfile server.

--volfile-server-transport=[socket|ib-verbs]
Transport type to get volfile from server. [default: socket]

--xlator-options=<volume-name.option=value>
Add/override a translator option for a volume with specified value.
Miscellaneous Options

-?, --help
Show this help text.

--usage Display a short usage message.

-V, --version
Show version information.
 	

2.4.2 Client

The GlusterFS client process is necessary to access remote storage volumes and mount them
locally using FUSE. This section documents the invocation of the client process and all its
command-line arguments.

glusterfs [options] <mountpoint>

The mountpoint is the directory where you want the GlusterFS filesystem to appear. Ex-
ample:

glusterfs -f /usr/local/etc/glusterfs-client.vol /mnt

The command-line options are detailed below.

Chapter 2: Installation and Invocation 6

� �
Basic Options

-f, --volfile=<path>
Use the volume file as the volume specification.

-s, --volfile-server=<hostname>
Server to get volume file from. This option overrides –volfile option.

-l, --log-file=<path>
Specify the path for the log file.

-L, --log-level=<level>
Set the log level for the server. Log level should be one of DEBUG, WARNING,
ERROR, CRITICAL, or NONE.
Advanced Options

--debug Run in debug mode. This option sets –no-daemon, –log-level to DEBUG and –log-
file to console.

-N, --no-daemon
Run glusterfs as a foreground process.

-p, --pid-file=<path>
Path for the PID file.

--volfile-id=<key>
’key’ of the volfile to be fetched from server.

--volfile-server-port=<port-number>
Listening port number of volfile server.

--volfile-server-transport=[socket|ib-verbs]
Transport type to get volfile from server. [default: socket]

--xlator-options=<volume-name.option=value>
Add/override a translator option for a volume with specified value.

--volume-name=<volume name>
Volume name in client spec to use. Defaults to the root volume.
FUSE Options

--attribute-timeout=<n>
Attribute timeout for inodes in the kernel, in seconds. Defaults to 1 second.

--disable-direct-io-mode
Disable direct I/O mode in FUSE kernel module.

-e, --entry-timeout=<n>
Entry timeout for directory entries in the kernel, in seconds. Defaults to 1 second.
Missellaneous Options

-?, --help
Show this help information.

-V, --version
Show version information.
 	

Chapter 2: Installation and Invocation 7

2.5 A Tutorial Introduction

This section will show you how to quickly get GlusterFS up and running. We’ll configure
GlusterFS as a simple network filesystem, with one server and one client. In this mode of usage,
GlusterFS can serve as a replacement for NFS.

We’ll make use of two machines; call them server and client (If you don’t want to setup two
machines, just run everything that follows on the same machine). In the examples that follow,
the shell prompts will use these names to clarify the machine on which the command is being
run. For example, a command that should be run on the server will be shown with the prompt:

[root@server]#

Our goal is to make a directory on the server (say, /export) accessible to the client.

First of all, get GlusterFS installed on both the machines, as described in the previous
sections. Make sure you have the FUSE kernel module loaded. You can ensure this by running:

[root@server]# modprobe fuse

Before we can run the GlusterFS client or server programs, we need to write two files called
volume specifications (equivalently refered to as volfiles). The volfile describes the translator tree
on a node. The next chapter will explain the concepts of ‘translator’ and ‘volume specification’
in detail. For now, just assume that the volfile is like an NFS /etc/export file.

On the server, create a text file somewhere (we’ll assume the path /tmp/glusterfsd.vol)
with the following contents.� �
volume colon-o
type storage/posix
option directory /export

end-volume

volume server
type protocol/server
subvolumes colon-o
option transport-type tcp
option auth.addr.colon-o.allow *

end-volume
 	
A brief explanation of the file’s contents. The first section defines a storage volume, named

“colon-o” (the volume names are arbitrary), which exports the /export directory. The second
section defines options for the translator which will make the storage volume accessible remotely.
It specifies colon-o as a subvolume. This defines the translator tree, about which more will be
said in the next chapter. The two options specify that the TCP protocol is to be used (as
opposed to InfiniBand, for example), and that access to the storage volume is to be provided to
clients with any IP address at all. If you wanted to restrict access to this server to only your
subnet for example, you’d specify something like 192.168.1.* in the second option line.

On the client machine, create the following text file (again, we’ll assume the path to be
/tmp/glusterfs-client.vol). Replace server-ip-address with the IP address of your server
machine. If you are doing all this on a single machine, use 127.0.0.1.

Chapter 2: Installation and Invocation 8

� �
volume client
type protocol/client
option transport-type tcp
option remote-host server-ip-address

option remote-subvolume colon-o
end-volume
 	

Now we need to start both the server and client programs. To start the server:
[root@server]# glusterfsd -f /tmp/glusterfs-server.vol

To start the client:
[root@client]# glusterfs -f /tmp/glusterfs-client.vol /mnt/glusterfs

You should now be able to see the files under the server’s /export directory in the
/mnt/glusterfs directory on the client. That’s it; GlusterFS is now working as a network
file system.

Chapter 3: Concepts 9

3 Concepts

3.1 Filesystems in Userspace

A filesystem is usually implemented in kernel space. Kernel space development is much harder
than userspace development. FUSE is a kernel module/library that allows us to write a filesystem
completely in userspace.

FUSE consists of a kernel module which interacts with the userspace implementation using
a device file /dev/fuse. When a process makes a syscall on a FUSE filesystem, VFS hands the
request to the FUSE module, which writes the request to /dev/fuse. The userspace implemen-
tation polls /dev/fuse, and when a request arrives, processes it and writes the result back to
/dev/fuse. The kernel then reads from the device file and returns the result to the user process.

In case of GlusterFS, the userspace program is the GlusterFS client. The control flow is
shown in the diagram below. The GlusterFS client services the request by sending it to the
server, which in turn hands it to the local POSIX filesystem.

Application
GlusterFS

client
GlusterFS

server

VFS

FUSE

VFS

EXT3

/dev/fuse

User space

Kernel space

Client
machine

Server
machine

system
call

poll

TCP
or

IB

Fig 1. Control flow in GlusterFS

Chapter 3: Concepts 10

3.2 Translator

The translator is the most important concept in GlusterFS. In fact, GlusterFS is nothing but a
collection of translators working together, forming a translator tree.

The idea of a translator is perhaps best understood using an analogy. Consider the VFS
in the Linux kernel. The VFS abstracts the various filesystem implementations (such as EXT3,
ReiserFS, XFS, etc.) supported by the kernel. When an application calls the kernel to perform an
operation on a file, the kernel passes the request on to the appropriate filesystem implementation.

For example, let’s say there are two partitions on a Linux machine: /, which is an EXT3 par-
tition, and /usr, which is a ReiserFS partition. Now if an application wants to open a file called,
say, /etc/fstab, then the kernel will internally pass the request to the EXT3 implementation.
If on the other hand, an application wants to read a file called /usr/src/linux/CREDITS, then
the kernel will call upon the ReiserFS implementation to do the job.

The “filesystem implementation” objects are analogous to GlusterFS translators. A Glus-
terFS translator implements all the filesystem operations. Whereas in VFS there is a two-level
tree (with the kernel at the root and all the filesystem implementation as its children), in Glus-
terFS there exists a more elaborate tree structure.

We can now define translators more precisely. A GlusterFS translator is a shared object (.so)
that implements every filesystem call. GlusterFS translators can be arranged in an arbitrary
tree structure (subject to constraints imposed by the translators). When GlusterFS receives
a filesystem call, it passes it on to the translator at the root of the translator tree. The root
translator may in turn pass it on to any or all of its children, and so on, until the leaf nodes are
reached. The result of a filesystem call is communicated in the reverse fashion, from the leaf
nodes up to the root node, and then on to the application.

So what might a translator tree look like?

Chapter 3: Concepts 11

io-cache

read-ahead

unify

client client client

server server server

TCP/InfiniBand

posix posix posix

10.0.0.2 10.0.0.410.0.0.3

10.0.0.1

Fig 2. A sample translator tree

Chapter 3: Concepts 12

The diagram depicts three servers and one GlusterFS client. It is important to note that
conceptually, the translator tree spans machine boundaries. Thus, the client machine in the
diagram, 10.0.0.1, can access the aggregated storage of the filesystems on the server machines
10.0.0.2, 10.0.0.3, and 10.0.0.4. The translator diagram will make more sense once you’ve
read the next chapter and understood the functions of the various translators.

3.3 Volume specification file

The volume specification file describes the translator tree for both the server and client programs.

A volume specification file is a sequence of volume definitions. The syntax of a volume
definition is explained below:� �
volume volume-name

type translator-name

option option-name option-value

...
subvolumes subvolume1 subvolume2 ...

end-volume

. . .
 	
volume-name

An identifier for the volume. This is just a human-readable name, and can contain
any alphanumeric character. For instance, “storage-1”, “colon-o”, or “forty-two”.

translator-name
Name of one of the available translators. Example: protocol/client,
cluster/unify.

option-name
Name of a valid option for the translator.

option-value
Value for the option. Everything following the “option” keyword to the end of the
line is considered the value; it is up to the translator to parse it.

subvolume1, subvolume2, . . .
Volume names of sub-volumes. The sub-volumes must already have been defined
earlier in the file.

There are a few rules you must follow when writing a volume specification file:

• Everything following a ‘#’ is considered a comment and is ignored. Blank lines are also
ignored.

• All names and keywords are case-sensitive.

• The order of options inside a volume definition does not matter.

• An option value may not span multiple lines.

• If an option is not specified, it will assume its default value.

• A sub-volume must have already been defined before it can be referenced. This means
you have to write the specification file “bottom-up”, starting from the leaf nodes of the
translator tree and moving up to the root.

A simple example volume specification file is shown below:

Chapter 3: Concepts 13

� �
This is a comment line
volume client
type protocol/client
option transport-type tcp
option remote-host localhost # Also a comment
option remote-subvolume brick
The subvolumes line may be absent
end-volume

volume iot
type performance/io-threads
option thread-count 4
subvolumes client
end-volume

volume wb
type performance/write-behind
subvolumes iot
end-volume
 	

Chapter 4: Translators 14

4 Translators

This chapter documents all the available GlusterFS translators in detail. Each translator section
will show its name (for example, cluster/unify), briefly describe its purpose and workings,
and list every option accepted by that translator and their meaning.

4.1 Storage Translators

The storage translators form the “backend” for GlusterFS. Currently, the only available storage
translator is the POSIX translator, which stores files on a normal POSIX filesystem. A pleasant
consequence of this is that your data will still be accessible if GlusterFS crashes or cannot be
started.

Other storage backends are planned for the future. One of the possibilities is an Amazon S3
translator. Amazon S3 is an unlimited online storage service accessible through a web services
API. The S3 translator will allow you to access the storage as a normal POSIX filesystem.1

4.1.1 POSIX

type storage/posix

The posix translator uses a normal POSIX filesystem as its “backend” to actually store files
and directories. This can be any filesystem that supports extended attributes (EXT3, ReiserFS,
XFS, ...). Extended attributes are used by some translators to store metadata, for example,
by the replicate and stripe translators. See Section 4.3.2 [Replicate], page 22 and Section 4.3.3
[Stripe], page 24, respectively for details.� �
directory <path>

The directory on the local filesystem which is to be used for storage.
 	
4.1.2 BDB

type storage/bdb

The BDB translator uses a Berkeley DB database as its “backend” to actually store files as
key-value pair in the database and directories as regular POSIX directories. Note that BDB does
not provide extended attribute support for regular files. Do not use BDB as storage translator
while using any translator that demands extended attributes on “backend”.� �
directory <path>

The directory on the local filesystem which is to be used for storage.

mode [cache|persistent] (cache)
When BDB is run in cache mode, recovery of back-end is not completely guaranteed.
persistent guarantees that BDB can recover back-end from Berkeley DB even if
GlusterFS crashes.

errfile <path>
The path of the file to be used as errfile for Berkeley DB to report detailed error
messages, if any. Note that all the contents of this file will be written by Berkeley
DB, not GlusterFS.

logdir <path>
 	
1 Some more discussion about this can be found at:

http://developer.amazonwebservices.com/connect/message.jspa?messageID=52873

Chapter 4: Translators 15

4.2 Client and Server Translators

The client and server translator enable GlusterFS to export a translator tree over the network
or access a remote GlusterFS server. These two translators implement GlusterFS’s network
protocol.

4.2.1 Transport modules

The client and server translators are capable of using any of the pluggable transport modules.
Currently available transport modules are tcp, which uses a TCP connection between client and
server to communicate; ib-sdp, which uses a TCP connection over InfiniBand, and ibverbs,
which uses high-speed InfiniBand connections.

Each transport module comes in two different versions, one to be used on the server side and
the other on the client side.

4.2.1.1 TCP

The TCP transport module uses a TCP/IP connection between the server and the client.

option transport-type tcp

The TCP client module accepts the following options:� �
non-blocking-connect [no|off|on|yes] (on)

Whether to make the connection attempt asynchronous.

remote-port <n> (6996)
Server port to connect to.

remote-host <hostname> *
Hostname or IP address of the server. If the host name resolves to multiple IP
addresses, all of them will be tried in a round-robin fashion. This feature can be
used to implement fail-over.
 	

The TCP server module accepts the following options:� �
bind-address <address> (0.0.0.0)

The local interface on which the server should listen to requests. Default is to listen
on all interfaces.

listen-port <n> (6996)
The local port to listen on.
 	

4.2.1.2 IB-SDP

option transport-type ib-sdp

kernel implements socket interface for ib hardware. SDP is over ib-verbs. This module
accepts the same options as tcp

4.2.1.3 ibverbs

option transport-type tcp

InfiniBand is a scalable switched fabric interconnect mechanism primarily used in high-
performance computing. InfiniBand can deliver data throughput of the order of 10 Gbit/s,
with latencies of 4-5 ms.

Chapter 4: Translators 16

The ib-verbs transport accesses the InfiniBand hardware through the “verbs” API, which
is the lowest level of software access possible and which gives the highest performance. On
InfiniBand hardware, it is always best to use ib-verbs. Use ib-sdp only if you cannot get
ib-verbs working for some reason.

The ib-verbs client module accepts the following options:� �
non-blocking-connect [no|off|on|yes] (on)

Whether to make the connection attempt asynchronous.

remote-port <n> (6996)
Server port to connect to.

remote-host <hostname> *
Hostname or IP address of the server. If the host name resolves to multiple IP
addresses, all of them will be tried in a round-robin fashion. This feature can be
used to implement fail-over.
 	

The ib-verbs server module accepts the following options:� �
bind-address <address> (0.0.0.0)

The local interface on which the server should listen to requests. Default is to listen
on all interfaces.

listen-port <n> (6996)
The local port to listen on.
 	

The following options are common to both the client and server modules:
If you are familiar with InfiniBand jargon, the mode is used by GlusterFS is “reliable

connection-oriented channel transfer”.� �
ib-verbs-work-request-send-count <n> (64)

Length of the send queue in datagrams. [Reason to increase/decrease?]

ib-verbs-work-request-recv-count <n> (64)
Length of the receive queue in datagrams. [Reason to increase/decrease?]

ib-verbs-work-request-send-size <size> (128KB)
Size of each datagram that is sent. [Reason to increase/decrease?]

ib-verbs-work-request-recv-size <size> (128KB)
Size of each datagram that is received. [Reason to increase/decrease?]

ib-verbs-port <n> (1)
Port number for ib-verbs.

ib-verbs-mtu [256|512|1024|2048|4096] (2048)
The Maximum Transmission Unit [Reason to increase/decrease?]

ib-verbs-device-name <device-name> (first device in the list)
InfiniBand device to be used.
 	

For maximum performance, you should ensure that the send/receive counts on both the client
and server are the same.

ib-verbs is preferred over ib-sdp.

Chapter 4: Translators 17

4.2.2 Client

type procotol/client

The client translator enables the GlusterFS client to access a remote server’s translator tree.� �
transport-type [tcp,ib-sdp,ib-verbs] (tcp)

The transport type to use. You should use the client versions of all the transport
modules (tcp, ib-sdp, ib-verbs).

remote-subvolume <volume_name> *
The name of the volume on the remote host to attach to. Note that this is not the
name of the protocol/server volume on the server. It should be any volume under
the server.

transport-timeout <n> (120- seconds)
Inactivity timeout. If a reply is expected and no activity takes place on the connec-
tion within this time, the transport connection will be broken, and a new connection
will be attempted.
 	

4.2.3 Server

type protocol/server

The server translator exports a translator tree and makes it accessible to remote GlusterFS
clients.� �
client-volume-filename <path> (<CONFDIR>/glusterfs-client.vol)

The volume specification file to use for the client. This is the file the client will
receive when it is invoked with the --server option (Section 2.4.2 [Client], page 5).

transport-type [tcp,ib-verbs,ib-sdp] (tcp)
The transport to use. You should use the server versions of all the transport modules
(tcp, ib-sdp, ib-verbs).

auth.addr.<volume name>.allow <IP address wildcard pattern>
IP addresses of the clients that are allowed to attach to the specified volume. This
can be a wildcard. For example, a wildcard of the form 192.168.*.* allows any
host in the 192.168.x.x subnet to connect to the server.
 	

4.3 Clustering Translators

The clustering translators are the most important GlusterFS translators, since it is these that
make GlusterFS a cluster filesystem. These translators together enable GlusterFS to access an
arbitrarily large amount of storage, and provide RAID-like redundancy and distribution over the
entire cluster.

There are three clustering translators: unify, replicate, and stripe. The unify translator
aggregates storage from many server nodes. The replicate translator provides file replication.
The stripe translator allows a file to be spread across many server nodes. The following sections
look at each of these translators in detail.

4.3.1 Unify

type cluster/unify

Chapter 4: Translators 18

The unify translator presents a ‘unified’ view of all its sub-volumes. That is, it makes the
union of all its sub-volumes appear as a single volume. It is the unify translator that gives
GlusterFS the ability to access an arbitrarily large amount of storage.

For unify to work correctly, certain invariants need to be maintained across the entire network.
These are:
• The directory structure of all the sub-volumes must be identical.
• A particular file can exist on only one of the sub-volumes. Phrasing it in another way, a

pathname such as /home/calvin/homework.txt) is unique across the entire cluster.

Chapter 4: Translators 19

/home
 /calvin
 /plans

 transmogrifier.txt
 /school

 leaf-collection.odp
 /personal

 susie.txt

/home
 /calvin
 /plans

 transmogrifier.txt
 /school

 /personal

/home
 /calvin
 /plans
 /school

 /personal
 susie.txt

/home
 /calvin
 /plans
 /school

 leaf-collection.odp
 /personal

Unify

Server 1
Server 3

Server 2

Unified view
seen by
applications

Looking at the second requirement, you might wonder how one can accomplish storing re-
dundant copies of a file, if no file can exist multiple times. To answer, we must remember that
these invariants are from unify’s perspective. A translator such as replicate at a lower level in
the translator tree than unify may subvert this picture.

The first invariant might seem quite tedious to ensure. We shall see later that this is not so,
since unify’s self-heal mechanism takes care of maintaining it.

Chapter 4: Translators 20

The second invariant implies that unify needs some way to decide which file goes where.
Unify makes use of scheduler modules for this purpose.

When a file needs to be created, unify’s scheduler decides upon the sub-volume to be used to
store the file. There are many schedulers available, each using a different algorithm and suitable
for different purposes.

The various schedulers are described in detail in the sections that follow.

4.3.1.1 ALU

option scheduler alu

ALU stands for "Adaptive Least Usage". It is the most advanced scheduler available in
GlusterFS. It balances the load across volumes taking several factors in account. It adapts
itself to changing I/O patterns according to its configuration. When properly configured, it can
eliminate the need for regular tuning of the filesystem to keep volume load nicely balanced.

The ALU scheduler is composed of multiple least-usage sub-schedulers. Each sub-scheduler
keeps track of a certain type of load, for each of the sub-volumes, getting statistics from the
sub-volumes themselves. The sub-schedulers are these:

• disk-usage: The used and free disk space on the volume.

• read-usage: The amount of reading done from this volume.

• write-usage: The amount of writing done to this volume.

• open-files-usage: The number of files currently open from this volume.

• disk-speed-usage: The speed at which the disks are spinning. This is a constant value and
therefore not very useful.

The ALU scheduler needs to know which of these sub-schedulers to use, and in which order
to evaluate them. This is done through the option alu.order configuration directive.

Each sub-scheduler needs to know two things: when to kick in (the entry-threshold), and how
long to stay in control (the exit-threshold). For example: when unifying three disks of 100GB,
keeping an exact balance of disk-usage is not necesary. Instead, there could be a 1GB margin,
which can be used to nicely balance other factors, such as read-usage. The disk-usage scheduler
can be told to kick in only when a certain threshold of discrepancy is passed, such as 1GB.
When it assumes control under this condition, it will write all subsequent data to the least-used
volume. If it is doing so, it is unwise to stop right after the values are below the entry-threshold
again, since that would make it very likely that the situation will occur again very soon. Such a
situation would cause the ALU to spend most of its time disk-usage scheduling, which is unfair
to the other sub-schedulers. The exit-threshold therefore defines the amount of data that needs
to be written to the least-used disk, before control is relinquished again.

In addition to the sub-schedulers, the ALU scheduler also has "limits" options. These can
stop the creation of new files on a volume once values drop below a certain threshold. For
example, setting option alu.limits.min-free-disk 5GB will stop the scheduling of files to
volumes that have less than 5GB of free disk space, leaving the files on that disk some room to
grow.

The actual values you assign to the thresholds for sub-schedulers and limits depend on your
situation. If you have fast-growing files, you’ll want to stop file-creation on a disk much earlier
than when hardly any of your files are growing. If you care less about disk-usage balance
than about read-usage balance, you’ll want a bigger disk-usage scheduler entry-threshold and a
smaller read-usage scheduler entry-threshold.

For thresholds defining a size, values specifying "KB", "MB" and "GB" are allowed. For
example: option alu.limits.min-free-disk 5GB.

Chapter 4: Translators 21

� �
alu.order <order> *
("disk-usage:write-usage:read-usage:open-files-usage:disk-speed")
alu.disk-usage.entry-threshold <size> (1GB)
alu.disk-usage.exit-threshold <size> (512MB)
alu.write-usage.entry-threshold <%> (25)
alu.write-usage.exit-threshold <%> (5)
alu.read-usage.entry-threshold <%> (25)
alu.read-usage.exit-threshold <%> (5)
alu.open-files-usage.entry-threshold <n> (1000)
alu.open-files-usage.exit-threshold <n> (100)
alu.limits.min-free-disk <%>
alu.limits.max-open-files <n>
 	
4.3.1.2 Round Robin (RR)

option scheduler rr

Round-Robin (RR) scheduler creates files in a round-robin fashion. Each client will have
its own round-robin loop. When your files are mostly similar in size and I/O access pattern,
this scheduler is a good choice. RR scheduler checks for free disk space on the server before
scheduling, so you can know when to add another server node. The default value of min-free-disk
is 5% and is checked on file creation calls, with atleast 10 seconds (by default) elapsing between
two checks.

Options:� �
rr.limits.min-free-disk <%> (5)

Minimum free disk space a node must have for RR to schedule a file to it.

rr.refresh-interval <t> (10 seconds)
Time between two successive free disk space checks.
 	

4.3.1.3 Random

option scheduler random

The random scheduler schedules file creation randomly among its child nodes. Like the
round-robin scheduler, it also checks for a minimum amount of free disk space before scheduling
a file to a node.� �
random.limits.min-free-disk <%> (5)

Minimum free disk space a node must have for random to schedule a file to it.

random.refresh-interval <t> (10 seconds)
Time between two successive free disk space checks.
 	

4.3.1.4 NUFA

option scheduler nufa

It is common in many GlusterFS computing environments for all deployed machines to act
as both servers and clients. For example, a research lab may have 40 workstations each with
its own storage. All of these workstations might act as servers exporting a volume as well as
clients accessing the entire cluster’s storage. In such a situation, it makes sense to store locally
created files on the local workstation itself (assuming files are accessed most by the workstation
that created them). The Non-Uniform File Allocation (NUFA) scheduler accomplishes that.

Chapter 4: Translators 22

NUFA gives the local system first priority for file creation over other nodes. If the local
volume does not have more free disk space than a specified amount (5% by default) then NUFA
schedules files among the other child volumes in a round-robin fashion.

NUFA is named after the similar strategy used for memory access, NUMA1.� �
nufa.limits.min-free-disk <%> (5)

Minimum disk space that must be free (local or remote) for NUFA to schedule a file
to it.

nufa.refresh-interval <t> (10 seconds)
Time between two successive free disk space checks.

nufa.local-volume-name <volume>
The name of the volume corresponding to the local system. This volume must be
one of the children of the unify volume. This option is mandatory.
 	

4.3.1.5 Namespace

Namespace volume needed because: - persistent inode numbers. - file exists even when node is
down.

namespace files are simply touched. on every lookup it is checked.� �
namespace <volume> *

Name of the namespace volume (which should be one of the unify volume’s children).

self-heal [on|off] (on)
Enable/disable self-heal. Unless you know what you are doing, do not disable self-
heal.
 	

4.3.1.6 Self Heal

* When a ’lookup()/stat()’ call is made on directory for the first time, a self-heal call is made,
which checks for the consistancy of its child nodes. If an entry is present in storage node, but not
in namespace, that entry is created in namespace, and vica-versa. There is an writedir() API
introduced which is used for the same. It also checks for permissions, and uid/gid consistencies.

* This check is also done when an server goes down and comes up.
* If one starts with an empty namespace export, but has data in storage nodes, a ’find

.>/dev/null’ or ’ls -lR >/dev/null’ should help to build namespace in one shot. Even otherwise,
namespace is built on demand when a file is looked up for the first time.

NOTE: There are some issues (Kernel ’Oops’ msgs) seen with fuse-2.6.3, when someone
deletes namespace in backend, when glusterfs is running. But with fuse-2.6.5, this issue is not
there.

4.3.2 Replicate (formerly AFR)

type cluster/replicate

Replicate provides RAID-1 like functionality for GlusterFS. Replicate replicates files and
directories across the subvolumes. Hence if Replicate has four subvolumes, there will be four
copies of all files and directories. Replicate provides high-availability, i.e., in case one of the
subvolumes go down (e. g. server crash, network disconnection) Replicate will still service the
requests using the redundant copies.

1 Non-Uniform Memory Access: http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access

Chapter 4: Translators 23

Replicate also provides self-heal functionality, i.e., in case the crashed servers come up, the
outdated files and directories will be updated with the latest versions. Replicate uses extended
attributes of the backend file system to track the versioning of files and directories and provide
the self-heal feature.

volume replicate-example
type cluster/replicate
subvolumes brick1 brick2 brick3
end-volume

This sample configuration will replicate all directories and files on brick1, brick2 and brick3.

All the read operations happen from the first alive child. If all the three sub-volumes are up,
reads will be done from brick1; if brick1 is down read will be done from brick2. In case read()
was being done on brick1 and it goes down, replicate transparently falls back to brick2.

The next release of GlusterFS will add the following features:

• Ability to specify the sub-volume from which read operations are to be done (this will help
users who have one of the sub-volumes as a local storage volume).

• Allow scheduling of read operations amongst the sub-volumes in a round-robin fashion.

The order of the subvolumes list should be same across all the ’replicate’s as they will be
used for locking purposes.

4.3.2.1 Self Heal

Replicate has self-heal feature, which updates the outdated file and directory copies by the most
recent versions. For example consider the following config:

volume replicate-example
type cluster/replicate
subvolumes brick1 brick2
end-volume

4.3.2.2 File self-heal

Now if we create a file foo.txt on replicate-example, the file will be created on brick1 and brick2.
The file will have two extended attributes associated with it in the backend filesystem. One is
trusted.afr.createtime and the other is trusted.afr.version. The trusted.afr.createtime xattr has
the create time (in terms of seconds since epoch) and trusted.afr.version is a number that is
incremented each time a file is modified. This increment happens during close (incase any write
was done before close).

If brick1 goes down, we edit foo.txt the version gets incremented. Now the brick1 comes
back up, when we open() on foo.txt replicate will check if their versions are same. If they are
not same, the outdated copy is replaced by the latest copy and its version is updated. After the
sync the open() proceeds in the usual manner and the application calling open() can continue
on its access to the file.

If brick1 goes down, we delete foo.txt and create a file with the same name again i.e foo.txt.
Now brick1 comes back up, clearly there is a chance that the version on brick1 being more than
the version on brick2, this is where createtime extended attribute helps in deciding which the
outdated copy is. Hence we need to consider both createtime and version to decide on the latest
copy.

The version attribute is incremented during the close() call. Version will not be incremented
in case there was no write() done. In case the fd that the close() gets was got by create() call,
we also create the createtime extended attribute.

Chapter 4: Translators 24

4.3.2.3 Directory self-heal

Suppose brick1 goes down, we delete foo.txt, brick1 comes back up, now we should not create
foo.txt on brick2 but we should delete foo.txt on brick1. We handle this situation by having
the createtime and version attribute on the directory similar to the file. when lookup() is done
on the directory, we compare the createtime/version attributes of the copies and see which files
needs to be deleted and delete those files and update the extended attributes of the outdated
directory copy. Each time a directory is modified (a file or a subdirectory is created or deleted
inside the directory) and one of the subvols is down, we increment the directory’s version.

lookup() is a call initiated by the kernel on a file or directory just before any access to that
file or directory. In glusterfs, by default, lookup() will not be called in case it was called in the
past one second on that particular file or directory.

The extended attributes can be seen in the backend filesystem using the getfattr command.
(getfattr -n trusted.afr.version <file>)� �
debug [on|off] (off)
self-heal [on|off] (on)
replicate <pattern> (*:1)
lock-node <child_volume> (first child is used by default)
 	

4.3.3 Stripe

type cluster/stripe

The stripe translator distributes the contents of a file over its sub-volumes. It does this by
creating a file equal in size to the total size of the file on each of its sub-volumes. It then writes
only a part of the file to each sub-volume, leaving the rest of it empty. These empty regions are
called ‘holes’ in Unix terminology. The holes do not consume any disk space.

The diagram below makes this clear.

Chapter 4: Translators 25

data hole hole hole datadata hole

Server 1 Server 2 Server 3

Whole file

Stripe

You can configure stripe so that only filenames matching a pattern are striped. You can also
configure the size of the data to be stored on each sub-volume.� �
block-size <pattern>:<size> (*:0 no striping)

Distribute files matching <pattern> over the sub-volumes, storing at least <size>
on each sub-volume. For example,
option block-size *.mpg:1M

distributes all files ending in .mpg, storing at least 1 MB on each sub-volume.
Any number of block-size option lines may be present, specifying different sizes
for different file name patterns.
 	

4.4 Performance Translators

4.4.1 Read Ahead

type performance/read-ahead

The read-ahead translator pre-fetches data in advance on every read. This benefits applica-
tions that mostly process files in sequential order, since the next block of data will already be
available by the time the application is done with the current one.

Additionally, the read-ahead translator also behaves as a read-aggregator. Many small read
operations are combined and issued as fewer, larger read requests to the server.

Read-ahead deals in “pages” as the unit of data fetched. The page size is configurable, as is
the “page count”, which is the number of pages that are pre-fetched.

Chapter 4: Translators 26

Read-ahead is best used with InfiniBand (using the ib-verbs transport). On FastEthernet and
Gigabit Ethernet networks, GlusterFS can achieve the link-maximum throughput even without
read-ahead, making it quite superflous.

Note that read-ahead only happens if the reads are perfectly sequential. If your application
accesses data in a random fashion, using read-ahead might actually lead to a performance loss,
since read-ahead will pointlessly fetch pages which won’t be used by the application.� �

Options:

page-size <n> (256KB)
The unit of data that is pre-fetched.

page-count <n> (2)
The number of pages that are pre-fetched.

force-atime-update [on|off|yes|no] (off|no)
Whether to force an access time (atime) update on the file on every read. Without
this, the atime will be slightly imprecise, as it will reflect the time when the read-
ahead translator read the data, not when the application actually read it.
 	

4.4.2 Write Behind

type performance/write-behind

The write-behind translator improves the latency of a write operation. It does this by rele-
gating the write operation to the background and returning to the application even as the write
is in progress. Using the write-behind translator, successive write requests can be pipelined.
This mode of write-behind operation is best used on the client side, to enable decreased write
latency for the application.

The write-behind translator can also aggregate write requests. If the aggregate-size op-
tion is specified, then successive writes upto that size are accumulated and written in a single
operation. This mode of operation is best used on the server side, as this will decrease the disk’s
head movement when multiple files are being written to in parallel.

The aggregate-size option has a default value of 128KB. Although this works well for
most users, you should always experiment with different values to determine the one that will
deliver maximum performance. This is because the performance of write-behind depends on
your interconnect, size of RAM, and the work load.� �
aggregate-size <n> (128KB)

Amount of data to accumulate before doing a write

flush-behind [on|yes|off|no] (off|no)
 	
4.4.3 IO Threads

type performance/io-threads

The IO threads translator is intended to increase the responsiveness of the server to metadata
operations by doing file I/O (read, write) in a background thread. Since the GlusterFS server
is single-threaded, using the IO threads translator can significantly improve performance. This
translator is best used on the server side, loaded just below the server protocol translator.

IO threads operates by handing out read and write requests to a separate thread. The total
number of threads in existence at a time is constant, and configurable.

Chapter 4: Translators 27

� �
thread-count <n> (1)

Number of threads to use.
 	
4.4.4 IO Cache

type performance/io-cache

The IO cache translator caches data that has been read. This is useful if many applications
read the same data multiple times, and if reads are much more frequent than writes (for example,
IO caching may be useful in a web hosting environment, where most clients will simply read
some files and only a few will write to them).

The IO cache translator reads data from its child in page-size chunks. It caches data upto
cache-size bytes. The cache is maintained as a prioritized least-recently-used (LRU) list, with
priorities determined by user-specified patterns to match filenames.

When the IO cache translator detects a write operation, the cache for that file is flushed.

The IO cache translator periodically verifies the consistency of cached data, using the modi-
fication times on the files. The verification timeout is configurable.� �
page-size <n> (128KB)

Size of a page.

cache-size (n) (32MB)
Total amount of data to be cached.

force-revalidate-timeout <n> (1)
Timeout to force a cache consistency verification, in seconds.

priority <pattern> (*:0)
Filename patterns listed in order of priority.
 	

4.4.5 Booster

type performance/booster

The booster translator gives applications a faster path to communicate read and write re-
quests to GlusterFS. Normally, all requests to GlusterFS from applications go through FUSE,
as indicated in Section 3.1 [Filesystems in Userspace], page 9. Using the booster translator in
conjunction with the GlusterFS booster shared library, an application can bypass the FUSE
path and send read/write requests directly to the GlusterFS client process.

The booster mechanism consists of two parts: the booster translator, and the booster shared
library. The booster translator is meant to be loaded on the client side, usually at the root of
the translator tree. The booster shared library should be LD_PRELOADed with the application.

The booster translator when loaded opens a Unix domain socket and listens for read/write
requests on it. The booster shared library intercepts read and write system calls and sends the
requests to the GlusterFS process directly using the Unix domain socket, bypassing FUSE. This
leads to superior performance.

Once you’ve loaded the booster translator in your volume specification file, you can start
your application as:

$ LD_PRELOAD=/usr/local/bin/glusterfs-booster.so your_app

The booster translator accepts no options.

4.5 Features Translators

Chapter 4: Translators 28

4.5.1 POSIX Locks

type features/posix-locks

This translator provides storage independent POSIX record locking support (fcntl locking).
Typically you’ll want to load this on the server side, just above the POSIX storage translator.
Using this translator you can get both advisory locking and mandatory locking support. It also
handles flock() locks properly.

Caveat: Consider a file that does not have its mandatory locking bits (+setgid, -group exe-
cution) turned on. Assume that this file is now opened by a process on a client that has the
write-behind xlator loaded. The write-behind xlator does not cache anything for files which
have mandatory locking enabled, to avoid incoherence. Let’s say that mandatory locking is now
enabled on this file through another client. The former client will not know about this change,
and write-behind may erroneously report a write as being successful when in fact it would fail
due to the region it is writing to being locked.

There seems to be no easy way to fix this. To work around this problem, it is recommended
that you never enable the mandatory bits on a file while it is open.� �
mandatory [on|off] (on)

Turns mandatory locking on.
 	
4.5.2 Fixed ID

type features/fixed-id

The fixed ID translator makes all filesystem requests from the client to appear to be coming
from a fixed, specified UID/GID, regardless of which user actually initiated the request.� �
fixed-uid <n> [if not set, not used]

The UID to send to the server

fixed-gid <n> [if not set, not used]
The GID to send to the server
 	

4.6 Miscellaneous Translators

4.6.1 ROT-13

type encryption/rot-13

ROT-13 is a toy translator that can “encrypt” and “decrypt” file contents using the ROT-13
algorithm. ROT-13 is a trivial algorithm that rotates each alphabet by thirteen places. Thus,
’A’ becomes ’N’, ’B’ becomes ’O’, and ’Z’ becomes ’M’.

It goes without saying that you shouldn’t use this translator if you need real encryption (a
future release of GlusterFS will have real encryption translators).� �
encrypt-write [on|off] (on)

Whether to encrypt on write

decrypt-read [on|off] (on)
Whether to decrypt on read
 	

Chapter 4: Translators 29

4.6.2 Trace

type debug/trace

The trace translator is intended for debugging purposes. When loaded, it logs all the system
calls received by the server or client (wherever trace is loaded), their arguments, and the results.
You must use a GlusterFS log level of DEBUG (See Section 2.4 [Running GlusterFS], page 4)
for trace to work.

Sample trace output (lines have been wrapped for readability):� �
2007-10-30 00:08:58 D [trace.c:1579:trace_opendir] trace: callid: 68
(*this=0x8059e40, loc=0x8091984 {path=/iozone3_283, inode=0x8091f00},
fd=0x8091d50)

2007-10-30 00:08:58 D [trace.c:630:trace_opendir_cbk] trace:
(*this=0x8059e40, op_ret=4, op_errno=1, fd=0x8091d50)

2007-10-30 00:08:58 D [trace.c:1602:trace_readdir] trace: callid: 69
(*this=0x8059e40, size=4096, offset=0 fd=0x8091d50)

2007-10-30 00:08:58 D [trace.c:215:trace_readdir_cbk] trace:
(*this=0x8059e40, op_ret=0, op_errno=0, count=4)

2007-10-30 00:08:58 D [trace.c:1624:trace_closedir] trace: callid: 71
(*this=0x8059e40, *fd=0x8091d50)

2007-10-30 00:08:58 D [trace.c:809:trace_closedir_cbk] trace:
(*this=0x8059e40, op_ret=0, op_errno=1)
 	

Chapter 5: Usage Scenarios 30

5 Usage Scenarios

5.1 Advanced Striping

This section is based on the Advanced Striping tutorial written by Anand Avati on the GlusterFS
wiki1.

5.1.1 Mixed Storage Requirements

There are two ways of scheduling the I/O. One at file level (using unify translator) and other
at block level (using stripe translator). Striped I/O is good for files that are potentially large
and require high parallel throughput (for example, a single file of 400GB being accessed by 100s
and 1000s of systems simultaneously and randomly). For most of the cases, file level scheduling
works best.

In the real world, it is desirable to mix file level and block level scheduling on a single storage
volume. Alternatively users can choose to have two separate volumes and hence two mount
points, but the applications may demand a single storage system to host both.

This document explains how to mix file level scheduling with stripe.

5.1.2 Configuration Brief

This setup demonstrates how users can configure unify translator with appropriate I/O scheduler
for file level scheduling and strip for only matching patterns. This way, GlusterFS chooses
appropriate I/O profile and knows how to efficiently handle both the types of data.

1 http://gluster.org/docs/index.php/Mixing Striped and Regular Files

Chapter 5: Usage Scenarios 31

A simple technique to achieve this effect is to create a stripe set of unify and stripe blocks,
where unify is the first sub-volume. Files that do not match the stripe policy passed on to first
unify sub-volume and inturn scheduled arcoss the cluster using its file level I/O scheduler.

stripe

unify client1 client2 clientN...
posix-unify

posix-stripe

posix-unify

posix-stripe

posix-unify

posix-stripe

...

server 1 server 2 server N

5.1.3 Preparing GlusterFS Envoronment

Create the directories /export/namespace, /export/unify and /export/stripe on all the storage
bricks.

Place the following server and client volume spec file under /etc/glusterfs (or appropriate
installed path) and replace the IP addresses / access control fields to match your environment.

Chapter 5: Usage Scenarios 32

� �
file: /etc/glusterfs/glusterfsd.vol
volume posix-unify

type storage/posix
option directory /export/for-unify

end-volume

volume posix-stripe
type storage/posix
option directory /export/for-stripe

end-volume

volume posix-namespace
type storage/posix
option directory /export/for-namespace

end-volume

volume server
type protocol/server
option transport-type tcp
option auth.addr.posix-unify.allow 192.168.1.*
option auth.addr.posix-stripe.allow 192.168.1.*
option auth.addr.posix-namespace.allow 192.168.1.*
subvolumes posix-unify posix-stripe posix-namespace

end-volume
 	

Chapter 5: Usage Scenarios 33

� �
file: /etc/glusterfs/glusterfs.vol
volume client-namespace
type protocol/client
option transport-type tcp
option remote-host 192.168.1.1
option remote-subvolume posix-namespace

end-volume

volume client-unify-1
type protocol/client
option transport-type tcp
option remote-host 192.168.1.1
option remote-subvolume posix-unify

end-volume

volume client-unify-2
type protocol/client
option transport-type tcp
option remote-host 192.168.1.2
option remote-subvolume posix-unify

end-volume

volume client-unify-3
type protocol/client
option transport-type tcp
option remote-host 192.168.1.3
option remote-subvolume posix-unify

end-volume

volume client-unify-4
type protocol/client
option transport-type tcp
option remote-host 192.168.1.4
option remote-subvolume posix-unify

end-volume

volume client-stripe-1
type protocol/client
option transport-type tcp
option remote-host 192.168.1.1
option remote-subvolume posix-stripe

end-volume

volume client-stripe-2
type protocol/client
option transport-type tcp
option remote-host 192.168.1.2
option remote-subvolume posix-stripe

end-volume

volume client-stripe-3
type protocol/client
option transport-type tcp
option remote-host 192.168.1.3
option remote-subvolume posix-stripe

end-volume

volume client-stripe-4
type protocol/client
option transport-type tcp
option remote-host 192.168.1.4
option remote-subvolume posix-stripe

end-volume

volume unify
type cluster/unify
option scheduler rr
subvolumes cluster-unify-1 cluster-unify-2 cluster-unify-3 cluster-unify-4

end-volume

volume stripe
type cluster/stripe
option block-size *.img:2MB # All files ending with .img are striped with 2MB stripe block size.
subvolumes unify cluster-stripe-1 cluster-stripe-2 cluster-stripe-3 cluster-stripe-4

end-volume
 	

Chapter 5: Usage Scenarios 34

Bring up the Storage
Starting GlusterFS Server: If you have installed through binary package, you can start the

service through init.d startup script. If not:
[root@server]# glusterfsd

Mounting GlusterFS Volumes:
[root@client]# glusterfs -s [BRICK-IP-ADDRESS] /mnt/cluster

Improving upon this Setup
Infiniband Verbs RDMA transport is much faster than TCP/IP GigE transport.
Use of performance translators such as read-ahead, write-behind, io-cache, io-threads, booster

is recommended.
Replace round-robin (rr) scheduler with ALU to handle more dynamic storage environments.

Chapter 6: Troubleshooting 35

6 Troubleshooting

This chapter is a general troubleshooting guide to GlusterFS. It lists common GlusterFS server
and client error messages, debugging hints, and concludes with the suggested procedure to report
bugs in GlusterFS.

6.1 GlusterFS error messages

6.1.1 Server errors

glusterfsd: FATAL: could not open specfile:
’/etc/glusterfs/glusterfsd.vol’

The GlusterFS server expects the volume specification file to be at
/etc/glusterfs/glusterfsd.vol. The example specification file will be installed as
/etc/glusterfs/glusterfsd.vol.sample. You need to edit it and rename it, or provide
a different specification file using the --spec-file command line option (See Section 2.4.1
[Server], page 4).

gf_log_init: failed to open logfile "/usr/var/log/glusterfs/glusterfsd.log"
(Permission denied)

You don’t have permission to create files in the /usr/var/log/glusterfs directory. Make
sure you are running GlusterFS as root. Alternatively, specify a different path for the log file
using the --log-file option (See Section 2.4.1 [Server], page 4).

6.1.2 Client errors

fusermount: failed to access mountpoint /mnt:
Transport endpoint is not connected

A previous failed (or hung) mount of GlusterFS is preventing it from being mounted again
in the same location. The fix is to do:

umount /mnt

and try mounting again.

“Transport endpoint is not connected”.

If you get this error when you try a command such as ls or cat, it means the GlusterFS
mount did not succeed. Try running GlusterFS in DEBUG logging level and study the log messages
to discover the cause.

“Connect to server failed”, “SERVER-ADDRESS: Connection refused”.

GluserFS Server is not running or dead. Check your network connections and firewall settings.
To check if the server is reachable, try:

telnet IP-ADDRESS 6996

If the server is accessible, your ‘telnet’ command should connect and block. If not you will see
an error message such as telnet: Unable to connect to remote host: Connection refused.
6996 is the default GlusterFS port. If you have changed it, then use the corresponding port
instead.

gf_log_init: failed to open logfile "/usr/var/log/glusterfs/glusterfs.log"
(Permission denied)

Chapter 6: Troubleshooting 36

You don’t have permission to create files in the /usr/var/log/glusterfs directory. Make
sure you are running GlusterFS as root. Alternatively, specify a different path for the log file
using the --log-file option (See Section 2.4.2 [Client], page 5).

6.2 FUSE error messages

modprobe fuse fails with: “Unknown symbol in module, or unknown parameter”.
If you are using fuse-2.6.x on Redhat Enterprise Linux Work Station 4 and Advanced Server 4

with 2.6.9-42.ELlargesmp, 2.6.9-42.ELsmp, 2.6.9-42.EL kernels and get this error while loading
FUSE kernel module, you need to apply the following patch.

For fuse-2.6.2:
http://ftp.zresearch.com/pub/gluster/glusterfs/fuse/fuse-2.6.2-rhel-

build.patch

For fuse-2.6.3:
http://ftp.zresearch.com/pub/gluster/glusterfs/fuse/fuse-2.6.3-rhel-

build.patch

6.3 AppArmour and GlusterFS

Under OpenSuSE GNU/Linux, the AppArmour security feature does not allow GlusterFS to
create temporary files or network socket connections even while running as root. You will see
error messages like ‘Unable to open log file: Operation not permitted’ or ‘Connection refused’.
Disabling AppArmour using YaST or properly configuring AppArmour to recognize glusterfsd
or glusterfs/fusermount should solve the problem.

6.4 Reporting a bug

If you encounter a bug in GlusterFS, please follow the below guidelines when you report it to
the mailing list. Be sure to report it! User feedback is crucial to the health of the project and
we value it highly.

6.4.1 General instructions

When running GlusterFS in a non-production environment, be sure to build it with the following
command:

$ make CFLAGS=’-g -O0 -DDEBUG’

This includes debugging information which will be helpful in getting backtraces (see below)
and also disable optimization. Enabling optimization can result in incorrect line numbers being
reported to gdb.

6.4.2 Volume specification files

Attach all relevant server and client spec files you were using when you encountered the bug.
Also tell us details of your setup, i.e., how many clients and how many servers.

6.4.3 Log files

Set the loglevel of your client and server programs to DEBUG (by passing the -L DEBUG option)
and attach the log files with your bug report. Obviously, if only the client is failing (for example),
you only need to send us the client log file.

6.4.4 Backtrace

If GlusterFS has encountered a segmentation fault or has crashed for some other reason, include
the backtrace with the bug report. You can get the backtrace using the following procedure.

Run the GlusterFS client or server inside gdb.

Chapter 6: Troubleshooting 37

$ gdb ./glusterfs
(gdb) set args -f client.spec -N -l/path/to/log/file -LDEBUG /mnt/point
(gdb) run

Now when the process segfaults, you can get the backtrace by typing:
(gdb) bt

If the GlusterFS process has crashed and dumped a core file (you can find this in / if running
as a daemon and in the current directory otherwise), you can do:

$ gdb /path/to/glusterfs /path/to/core.<pid>

and then get the backtrace.
If the GlusterFS server or client seems to be hung, then you can get the backtrace by attaching

gdb to the process. First get the PID of the process (using ps), and then do:
$ gdb ./glusterfs <pid>

Press Ctrl-C to interrupt the process and then generate the backtrace.

6.4.5 Reproducing the bug

If the bug is reproducible, please include the steps necessary to do so. If the bug is not repro-
ducible, send us the bug report anyway.

6.4.6 Other information

If you think it is relevant, send us also the version of FUSE you’re using, the kernel version,
platform.

Appendix A: GNU Free Documentation Licence 38

Appendix A GNU Free Documentation Licence

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

Appendix A: GNU Free Documentation Licence 39

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.

Appendix A: GNU Free Documentation Licence 40

You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

Appendix A: GNU Free Documentation Licence 41

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

Appendix A: GNU Free Documentation Licence 42

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation Licence 43

version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

Appendix A: GNU Free Documentation Licence 44

A.0.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Index 45

Index

A
alu (scheduler) . 20
AppArmour . 36
arch . 3

B
booster . 27

C
commercial support . 2

D
DNS round robin . 15, 16

F
fcntl . 28
FDL, GNU Free Documentation License 38
fixed-id (translator) . 28

G
GlusterFS client. 5
GlusterFS mailing list . 2
GlusterFS server . 4

I
infiniband transport . 15
InfiniBand, installation . 3
io-cache (translator) . 27
io-threads (translator) . 26
IRC channel, #gluster . 2

L
libibverbs . 3

N
namespace . 22

nufa (scheduler) . 21

O
OpenSuSE . 36

P
posix-locks (translator) . 28

R
random (scheduler) . 21
read-ahead (translator) . 25
record locking . 28
Redhat Enterprise Linux . 36
Replicate . 22
rot-13 (translator) . 28
rr (scheduler) . 21

S
scheduler (unify) . 17
self heal (replicate) . 23
self heal (unify) . 22
stripe (translator) . 24

T
trace (translator) . 29

U
unify (translator) . 17
unify invariants . 18

W
write-behind (translator) . 26

Z
Z Research, Inc. 2

	Acknowledgements
	Introduction
	Contacting us

	Installation and Invocation
	Pre requisites
	FUSE
	Patched FUSE
	libibverbs (optional)
	Bison and Flex

	Getting GlusterFS
	Building
	Running GlusterFS
	Server
	Client

	A Tutorial Introduction

	Concepts
	Filesystems in Userspace
	Translator
	Volume specification file

	Translators
	Storage Translators
	POSIX
	BDB

	Client and Server Translators
	Transport modules
	TCP
	IB-SDP
	ibverbs

	Client
	Server

	Clustering Translators
	Unify
	ALU
	Round Robin (RR)
	Random
	NUFA
	Namespace
	Self Heal

	Replicate (formerly AFR)
	Self Heal
	File self-heal
	Directory self-heal

	Stripe

	Performance Translators
	Read Ahead
	Write Behind
	IO Threads
	IO Cache
	Booster

	Features Translators
	POSIX Locks
	Fixed ID

	Miscellaneous Translators
	ROT-13
	Trace

	Usage Scenarios
	Advanced Striping
	Mixed Storage Requirements
	Configuration Brief
	Preparing GlusterFS Envoronment

	Troubleshooting
	GlusterFS error messages
	Server errors
	Client errors

	FUSE error messages
	AppArmour and GlusterFS
	Reporting a bug
	General instructions
	Volume specification files
	Log files
	Backtrace
	Reproducing the bug
	Other information

	GNU Free Documentation Licence
	ADDENDUM: How to use this License for your documents
	Index

