1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
|
#!/usr/bin/env python
# texttable - module for creating simple ASCII tables
# Copyright (C) 2003-2010 Gerome Fournier <jefke(at)free.fr>
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
# Incorporated from texttable.py downloaded from
# http://jefke.free.fr/stuff/python/texttable/texttable-0.7.0.tar.gz
import sys
import string
try:
if sys.version >= '2.3':
import textwrap
elif sys.version >= '2.2':
from optparse import textwrap
else:
from optik import textwrap
except ImportError:
sys.stderr.write("Can't import textwrap module!\n")
raise
try:
True, False
except NameError:
(True, False) = (1, 0)
def len(iterable):
"""Redefining len here so it will be able to work with non-ASCII characters
"""
if not isinstance(iterable, str):
return iterable.__len__()
try:
return len(unicode(iterable, 'utf'))
except:
return iterable.__len__()
class ArraySizeError(Exception):
"""Exception raised when specified rows don't fit the required size
"""
def __init__(self, msg):
self.msg = msg
Exception.__init__(self, msg, '')
def __str__(self):
return self.msg
class Texttable:
BORDER = 1
HEADER = 1 << 1
HLINES = 1 << 2
VLINES = 1 << 3
def __init__(self, max_width=80):
"""Constructor
- max_width is an integer, specifying the maximum width of the table
- if set to 0, size is unlimited, therefore cells won't be wrapped
"""
if max_width <= 0:
max_width = False
self._max_width = max_width
self._deco = Texttable.VLINES | Texttable.HLINES | Texttable.BORDER | \
Texttable.HEADER
self.set_chars(['-', '|', '+', '='])
self.reset()
def reset(self):
"""Reset the instance
- reset rows and header
"""
self._hline_string = None
self._row_size = None
self._header = []
self._rows = []
def header(self, array):
"""Specify the header of the table
"""
self._check_row_size(array)
self._header = map(str, array)
def add_row(self, array):
"""Add a row in the rows stack
- cells can contain newlines and tabs
"""
self._check_row_size(array)
self._rows.append(map(str, array))
def add_rows(self, rows, header=True):
"""Add several rows in the rows stack
- The 'rows' argument can be either an iterator returning arrays,
or a by-dimensional array
- 'header' specifies if the first row should be used as the header
of the table
"""
# nb: don't use 'iter' on by-dimensional arrays, to get a
# usable code for python 2.1
if header:
if hasattr(rows, '__iter__') and hasattr(rows, 'next'):
self.header(rows.next())
else:
self.header(rows[0])
rows = rows[1:]
for row in rows:
self.add_row(row)
def set_chars(self, array):
"""Set the characters used to draw lines between rows and columns
- the array should contain 4 fields:
[horizontal, vertical, corner, header]
- default is set to:
['-', '|', '+', '=']
"""
if len(array) != 4:
raise ArraySizeError, "array should contain 4 characters"
array = [ x[:1] for x in [ str(s) for s in array ] ]
(self._char_horiz, self._char_vert,
self._char_corner, self._char_header) = array
def set_deco(self, deco):
"""Set the table decoration
- 'deco' can be a combinaison of:
Texttable.BORDER: Border around the table
Texttable.HEADER: Horizontal line below the header
Texttable.HLINES: Horizontal lines between rows
Texttable.VLINES: Vertical lines between columns
All of them are enabled by default
- example:
Texttable.BORDER | Texttable.HEADER
"""
self._deco = deco
def set_cols_align(self, array):
"""Set the desired columns alignment
- the elements of the array should be either "l", "c" or "r":
* "l": column flushed left
* "c": column centered
* "r": column flushed right
"""
self._check_row_size(array)
self._align = array
def set_cols_valign(self, array):
"""Set the desired columns vertical alignment
- the elements of the array should be either "t", "m" or "b":
* "t": column aligned on the top of the cell
* "m": column aligned on the middle of the cell
* "b": column aligned on the bottom of the cell
"""
self._check_row_size(array)
self._valign = array
def set_cols_width(self, array):
"""Set the desired columns width
- the elements of the array should be integers, specifying the
width of each column. For example:
[10, 20, 5]
"""
self._check_row_size(array)
try:
array = map(int, array)
if reduce(min, array) <= 0:
raise ValueError
except ValueError:
sys.stderr.write("Wrong argument in column width specification\n")
raise
self._width = array
def draw(self):
"""Draw the table
- the table is returned as a whole string
"""
if not self._header and not self._rows:
return
self._compute_cols_width()
self._check_align()
out = ""
if self._has_border():
out += self._hline()
if self._header:
out += self._draw_line(self._header, isheader=True)
if self._has_header():
out += self._hline_header()
length = 0
for row in self._rows:
length += 1
out += self._draw_line(row)
if self._has_hlines() and length < len(self._rows):
out += self._hline()
if self._has_border():
out += self._hline()
return out[:-1]
def _check_row_size(self, array):
"""Check that the specified array fits the previous rows size
"""
if not self._row_size:
self._row_size = len(array)
elif self._row_size != len(array):
raise ArraySizeError, "array should contain %d elements" \
% self._row_size
def _has_vlines(self):
"""Return a boolean, if vlines are required or not
"""
return self._deco & Texttable.VLINES > 0
def _has_hlines(self):
"""Return a boolean, if hlines are required or not
"""
return self._deco & Texttable.HLINES > 0
def _has_border(self):
"""Return a boolean, if border is required or not
"""
return self._deco & Texttable.BORDER > 0
def _has_header(self):
"""Return a boolean, if header line is required or not
"""
return self._deco & Texttable.HEADER > 0
def _hline_header(self):
"""Print header's horizontal line
"""
return self._build_hline(True)
def _hline(self):
"""Print an horizontal line
"""
if not self._hline_string:
self._hline_string = self._build_hline()
return self._hline_string
def _build_hline(self, is_header=False):
"""Return a string used to separated rows or separate header from
rows
"""
horiz = self._char_horiz
if (is_header):
horiz = self._char_header
# compute cell separator
s = "%s%s%s" % (horiz, [horiz, self._char_corner][self._has_vlines()],
horiz)
# build the line
l = string.join([horiz*n for n in self._width], s)
# add border if needed
if self._has_border():
l = "%s%s%s%s%s\n" % (self._char_corner, horiz, l, horiz,
self._char_corner)
else:
l += "\n"
return l
def _len_cell(self, cell):
"""Return the width of the cell
Special characters are taken into account to return the width of the
cell, such like newlines and tabs
"""
cell_lines = cell.split('\n')
maxi = 0
for line in cell_lines:
length = 0
parts = line.split('\t')
for part, i in zip(parts, range(1, len(parts) + 1)):
length = length + len(part)
if i < len(parts):
length = (length/8 + 1)*8
maxi = max(maxi, length)
return maxi
def _compute_cols_width(self):
"""Return an array with the width of each column
If a specific width has been specified, exit. If the total of the
columns width exceed the table desired width, another width will be
computed to fit, and cells will be wrapped.
"""
if hasattr(self, "_width"):
return
maxi = []
if self._header:
maxi = [ self._len_cell(x) for x in self._header ]
for row in self._rows:
for cell,i in zip(row, range(len(row))):
try:
maxi[i] = max(maxi[i], self._len_cell(cell))
except (TypeError, IndexError):
maxi.append(self._len_cell(cell))
items = len(maxi)
length = reduce(lambda x,y: x+y, maxi)
if self._max_width and length + items*3 + 1 > self._max_width:
maxi = [(self._max_width - items*3 -1) / items \
for n in range(items)]
self._width = maxi
def _check_align(self):
"""Check if alignment has been specified, set default one if not
"""
if not hasattr(self, "_align"):
self._align = ["l"]*self._row_size
if not hasattr(self, "_valign"):
self._valign = ["t"]*self._row_size
def _draw_line(self, line, isheader=False):
"""Draw a line
Loop over a single cell length, over all the cells
"""
line = self._splitit(line, isheader)
space = " "
out = ""
for i in range(len(line[0])):
if self._has_border():
out += "%s " % self._char_vert
length = 0
for cell, width, align in zip(line, self._width, self._align):
length += 1
cell_line = cell[i]
fill = width - len(cell_line)
if isheader:
align = "c"
if align == "r":
out += "%s " % (fill * space + cell_line)
elif align == "c":
out += "%s " % (fill/2 * space + cell_line \
+ (fill/2 + fill%2) * space)
else:
out += "%s " % (cell_line + fill * space)
if length < len(line):
out += "%s " % [space, self._char_vert][self._has_vlines()]
out += "%s\n" % ['', self._char_vert][self._has_border()]
return out
def _splitit(self, line, isheader):
"""Split each element of line to fit the column width
Each element is turned into a list, result of the wrapping of the
string to the desired width
"""
line_wrapped = []
for cell, width in zip(line, self._width):
array = []
for c in cell.split('\n'):
array.extend(textwrap.wrap(unicode(c, 'utf'), width))
line_wrapped.append(array)
max_cell_lines = reduce(max, map(len, line_wrapped))
for cell, valign in zip(line_wrapped, self._valign):
if isheader:
valign = "t"
if valign == "m":
missing = max_cell_lines - len(cell)
cell[:0] = [""] * (missing / 2)
cell.extend([""] * (missing / 2 + missing % 2))
elif valign == "b":
cell[:0] = [""] * (max_cell_lines - len(cell))
else:
cell.extend([""] * (max_cell_lines - len(cell)))
return line_wrapped
# Copyright (c) 2010 Gluster, Inc. <http://www.gluster.com>
# This file is part of GlusterFS.
# GlusterFS is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published
# by the Free Software Foundation; either version 3 of the License,
# or (at your option) any later version.
# GlusterFS is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see
# <http://www.gnu.org/licenses/>.
graph_available = True
try:
import numpy as np
import matplotlib.pyplot as plt
except ImportError:
graph_available = False
import re
import sys
from optparse import OptionParser
# Global dict-of-dict holding the latency data
# latency[xlator-name][op-name]
latencies = {}
counts = {}
totals = {}
def collect_data (f):
"""Collect latency data from the file object f and store it in
the global variable @latencies"""
# example dump file line:
# fuse.latency.TRUNCATE=3147.000,4
for line in f:
m = re.search ("(\w+)\.\w+.(\w+)=(\w+\.\w+),(\w+),(\w+.\w+)", line)
if m and float(m.group(3)) != 0:
xlator = m.group(1)
op = m.group(2)
time = m.group(3)
count = m.group(4)
total = m.group(5)
if not xlator in latencies.keys():
latencies[xlator] = dict()
if not xlator in counts.keys():
counts[xlator] = dict()
if not xlator in totals.keys():
totals[xlator] = dict()
latencies[xlator][op] = time
counts[xlator][op] = count
totals[xlator][op] = total
def calc_latency_heights (xlator_order):
heights = map (lambda x: [], xlator_order)
N = len (xlator_order)
for i in range (N):
xl = xlator_order[i]
k = latencies[xl].keys()
k.sort()
if i == len (xlator_order) - 1:
# bottom-most xlator
heights[i] = [float (latencies[xl][key]) for key in k]
else:
next_xl = xlator_order[i+1]
this_xl_time = [latencies[xl][key] for key in k]
next_xl_time = [latencies[next_xl][key] for key in k]
heights[i] = map (lambda x, y: float (x) - float (y),
this_xl_time, next_xl_time)
return heights
# have sufficient number of colors
colors = ["violet", "blue", "green", "yellow", "orange", "red"]
def latency_profile (title, xlator_order, mode):
heights = calc_latency_heights (xlator_order)
N = len (latencies[xlator_order[0]].keys())
Nxl = len (xlator_order)
ind = np.arange (N)
width = 0.35
pieces = map (lambda x: [], xlator_order)
bottoms = map (lambda x: [], xlator_order)
bottoms[Nxl-1] = map (lambda x: 0, latencies[xlator_order[0]].keys())
k = latencies[xlator_order[0]].keys()
k.sort()
for i in range (Nxl-1):
xl = xlator_order[i+1]
bottoms[i] = [float(latencies[xl][key]) for key in k]
if mode == 'text':
print "\n%sLatency profile for %s\n" % (' '*20, title)
print "Average latency (microseconds):\n"
table = Texttable()
table.set_cols_align(["l", "r"] + ["r"] * len(xlator_order))
rows = []
header = ['OP', 'OP Average (us)'] + xlator_order
rows = []
for op in k:
sum = reduce (lambda x, y: x + y, [heights[xlator_order.index(xl)][k.index(op)] for xl in xlator_order],
0)
row = [op]
row += ["%5.2f" % sum]
for xl in xlator_order:
op_index = k.index(op)
row += ["%5.2f" % (heights[xlator_order.index(xl)][op_index])]
rows.append(row)
def row_sort(r1, r2):
v1 = float(r1[1])
v2 = float(r2[1])
if v1 < v2:
return -1
elif v1 == v2:
return 0
else:
return 1
rows.sort(row_sort, reverse=True)
table.add_rows([header] + rows)
print table.draw()
elif mode == 'graph':
for i in range(Nxl):
pieces[i] = plt.bar (ind, heights[i], width, color=colors[i],
bottom=bottoms[i])
plt.ylabel ("Average Latency (microseconds)")
plt.title ("Latency Profile for '%s'" % title)
k = latencies[xlator_order[0]].keys()
k.sort ()
plt.xticks (ind+width/2., k)
m = round (max(map (float, latencies[xlator_order[0]].values())), -2)
plt.yticks (np.arange(0, m + m*0.1, m/10))
plt.legend (map (lambda p: p[0], pieces), xlator_order)
plt.show ()
else:
print "Unknown mode specified!"
sys.exit(1)
def fop_distribution (title, xlator_order, mode):
plt.ylabel ("Percentage of calls")
plt.title ("FOP distribution for '%s'" % title)
k = counts[xlator_order[0]].keys()
k.sort ()
N = len (latencies[xlator_order[0]].keys())
ind = np.arange(N)
width = 0.35
total = 0
top_xl = xlator_order[0]
for op in k:
total += int(counts[top_xl][op])
heights = []
for op in k:
heights.append (float(counts[top_xl][op])/total * 100)
if mode == 'text':
print "\n%sFOP distribution for %s\n" % (' '*20, title)
print "Total number of calls: %d\n" % total
table = Texttable()
table.set_cols_align(["l", "r", "r"])
rows = []
header = ["OP", "% of Calls", "Count"]
for op in k:
row = [op, "%5.2f" % (float(counts[top_xl][op])/total * 100), counts[top_xl][op]]
rows.append(row)
def row_sort(r1, r2):
v1 = float(r1[1])
v2 = float(r2[1])
if v1 < v2:
return -1
elif v1 == v2:
return 0
else:
return 1
rows.sort(row_sort, reverse=True)
table.add_rows([header] + rows)
print table.draw()
elif mode == 'graph':
bars = plt.bar (ind, heights, width, color="red")
for bar in bars:
height = bar.get_height()
plt.text (bar.get_x()+bar.get_width()/2., 1.05*height,
"%d%%" % int(height))
plt.xticks(ind+width/2., k)
plt.yticks(np.arange (0, 110, 10))
plt.show()
else:
print "mode not specified!"
sys.exit(1)
def calc_workload_heights (xlator_order, scaling):
workload_heights = map (lambda x: [], xlator_order)
top_xl = xlator_order[0]
N = len (xlator_order)
for i in range (N):
xl = xlator_order[i]
k = totals[xl].keys()
k.sort()
if i == len (xlator_order) - 1:
# bottom-most xlator
workload_heights[i] = [float (totals[xl][key]) / float(totals[top_xl][key]) * scaling[k.index(key)] for key in k]
else:
next_xl = xlator_order[i+1]
this_xl_time = [float(totals[xl][key]) / float(totals[top_xl][key]) * scaling[k.index(key)] for key in k]
next_xl_time = [float(totals[next_xl][key]) / float(totals[top_xl][key]) * scaling[k.index(key)] for key in k]
workload_heights[i] = map (lambda x, y: (float (x) - float (y)),
this_xl_time, next_xl_time)
return workload_heights
def workload_profile(title, xlator_order, mode):
plt.ylabel ("Percentage of Total Time")
plt.title ("Workload Profile for '%s'" % title)
k = totals[xlator_order[0]].keys()
k.sort ()
N = len(totals[xlator_order[0]].keys())
Nxl = len(xlator_order)
ind = np.arange(N)
width = 0.35
total = 0
top_xl = xlator_order[0]
for op in k:
total += float(totals[top_xl][op])
p_heights = []
for op in k:
p_heights.append (float(totals[top_xl][op])/total * 100)
heights = calc_workload_heights (xlator_order, p_heights)
pieces = map (lambda x: [], xlator_order)
bottoms = map (lambda x: [], xlator_order)
bottoms[Nxl-1] = map (lambda x: 0, totals[xlator_order[0]].keys())
for i in range (Nxl-1):
xl = xlator_order[i+1]
k = totals[xl].keys()
k.sort()
bottoms[i] = [float(totals[xl][key]) / float(totals[top_xl][key]) * p_heights[k.index(key)] for key in k]
if mode == 'text':
print "\n%sWorkload profile for %s\n" % (' '*20, title)
print "Total Time: %d microseconds = %.1f seconds = %.1f minutes\n" % (total, total / 1000000.0, total / 6000000.0)
table = Texttable()
table.set_cols_align(["l", "r"] + ["r"] * len(xlator_order))
rows = []
header = ['OP', 'OP Total (%)'] + xlator_order
rows = []
for op in k:
sum = reduce (lambda x, y: x + y, [heights[xlator_order.index(xl)][k.index(op)] for xl in xlator_order],
0)
row = [op]
row += ["%5.2f" % sum]
for xl in xlator_order:
op_index = k.index(op)
row += ["%5.2f" % heights[xlator_order.index(xl)][op_index]]
rows.append(row)
def row_sort(r1, r2):
v1 = float(r1[1])
v2 = float(r2[1])
if v1 < v2:
return -1
elif v1 == v2:
return 0
else:
return 1
rows.sort(row_sort, reverse=True)
table.add_rows([header] + rows)
print table.draw()
elif mode == 'graph':
for i in range(Nxl):
pieces[i] = plt.bar (ind, heights[i], width, color=colors[i],
bottom=bottoms[i])
for key in k:
bar = pieces[Nxl-1][k.index(key)]
plt.text (bar.get_x() + bar.get_width()/2., 1.05*p_heights[k.index(key)],
"%d%%" % int(p_heights[k.index(key)]))
plt.xticks(ind+width/2., k)
plt.yticks(np.arange (0, 110, 10))
plt.legend (map (lambda p: p[0], pieces), xlator_order)
plt.show()
else:
print "Unknown mode specified!"
sys.exit(1)
def main ():
parser = OptionParser(usage="usage: %prog [-l | -d | -w] -x <xlator order> <state dump file>")
parser.add_option("-l", "--latency", dest="latency", action="store_true",
help="Produce latency profile")
parser.add_option("-d", "--distribution", dest="distribution", action="store_true",
help="Produce distribution of FOPs")
parser.add_option("-w", "--workload", dest="workload", action="store_true",
help="Produce workload profile")
parser.add_option("-t", "--title", dest="title", help="Set the title of the graph")
parser.add_option("-x", "--xlator-order", dest="xlator_order", help="Specify the order of xlators")
parser.add_option("-m", "--mode", dest="mode", help="Output format, can be text[default] or graph")
(options, args) = parser.parse_args()
if len(args) != 1:
parser.error("Incorrect number of arguments")
if (options.xlator_order):
xlator_order = options.xlator_order.split()
else:
print "xlator order must be specified"
sys.exit(1)
collect_data(file (args[0], 'r'))
mode = 'text'
if (options.mode):
mode = options.mode
if options.mode == 'graph' and graph_available == False:
print "matplotlib not available, falling back to text mode"
mode = 'text'
if (options.latency):
latency_profile (options.title, xlator_order, mode)
if (options.distribution):
fop_distribution(options.title, xlator_order, mode)
if (options.workload):
workload_profile(options.title, xlator_order, mode)
main ()
|