
Overall Structure

DataDataEvents DataTerm 10!

DataDataEvents Data

Filter

FilterTerm 11!

Global!
Filter etcd

Event Log Index

There are actually two parts to the journal - the
event log and the index. The event log is
divided into terms to support efficient space
allocation and deallocation. Information about
terms is stored in etcd. Information within terms
is stored as a series of events corresponding to
user I/O requests. The events themselves are
stored in one file, while bulk data (e.g. for writev)
is stored in one or more supplemental files.

Event Log

Event-log Files

NEW_ENTRY #1

…

NEW_ENTRY #2

…

NEW_ENTRY #3

…

Data for #1

Data for #2

…
…

…

…

Data for #3
Main File

Data File A

Data File B

Each term’s main event-log file contains short
event records, which may contain pointers into
one or more supplemental data files. Each such
pointer consists of an ID identifying a particular
data file, plus an offset into that file. Storing bulk
data (especially that for writev) separately allows
the main file to be scanned efficiently without
having to read and then skip over megabytes of
data that’s not needed e.g. for reconciliation.

Event Format
NEW_REQUEST Request Type Request ID

Extension data length

STATE_CHANGE New State Request ID

(extension data plus padding to four-byte boundary)

GFID

All entries in the event log start with a four-byte
header, starting with an event type. The other
contents of the header can vary depending on
the event type. For the most common
NEW_EVENT and STATE_CHANGE types, these
contents include a request ID that is used to
associate all related events with one another. In
the special case of NEW_REQUEST, extra
information describing the request follows the
header, and is described on the next slide.

Extension Data

Flags

Offset

Length

Data file ID

Data file offset

xattr key

xattr value
setxattr

writevnew length
truncate

Extension data can take many forms, depending
on the type of the user I/O request. These are
just examples. Note that the writev example has
two offsets - one within the actual file and one
within the journal data file. The second offset,
along with the data file ID, defines where the
data landed within the journal before being
destaged to the main file store.

Destaging and Fsync (1/2)

UNCOMMITTED!
(new request)

IN_PROGRESS!
(before destage)

NEED_FSYNC!
(after destage)

COMMITTED!
(after fsync)

INVALID!
(after rollback)

The life cycle of a request is shown above. As
part of the higher-level protocol, the first
NEW_REQUEST entry for a request puts it in
UNCOMMITTED state. At our local discretion
we destage, adding STATE_CHANGE events to
IN_PROGRESS and NEED_FSYNC around the
actual main-store operation. Finally, when a
user’s fsync request comes in (or at our local
discretion) we issue a local fsync and add a final
STATE_CHANGE(COMMITTED) event.
(continued)

Destaging and Fsync (2/2)

UNCOMMITTED!
(new request)

IN_PROGRESS!
(before destage)

NEED_FSYNC!
(after destage)

COMMITTED!
(after fsync)

INVALID!
(after rollback)

(continued)
There are two exceptions to the normal life cycle,
both shown with dotted lines above. First, if a
write is done with O_SYNC, the NEW_EVENT
immediately puts the request into COMMITTED
state with no further need to destage or fsync.
Second, if a rollback message is received before
the request gets to IN_PROGRESS, we quash the
request by adding a STATE_CHANGE(INVALID)
event.

Frozen terms (no new events)Frozen terms (no new events)

Preallocation and Retirement

Retired terms (no new events)

Frozen terms (no new events)Frozen terms (no new events)Draining terms (new events but not new user requests)

Current term

Next term (preallocating)

There will usually be multiple terms “in play” at
once. The current term and next term are pretty
self-explanatory. When a term stops being
current, it stops collecting NEW_REQUEST
events (those will go into the new current term)
but might still collect other internal events
related to destaging or reconciliation. When
even those events have finished, the term is
considered completed and is kept around only
for reconciliation.

Deleting Terms

Not needed locally

Not needed for
reconciliation

AND OK to delete

Local!
Files

etcd

A term can only be deleted when two conditions
are met - it’s not needed locally (i.e. all data has
been fully destaged and fsync’ed) and it’s not
needed for reconciliation. Therefore, we must
check for eligibility whenever either of these
conditions change.

Index

Overlapping Operations

Main!
Store

Term!
N-1

Term!
N

User!
View

Because there might be an indefinite amount of
time before writes are destaged from the journal
into the main store, we need to account for in-
journal data on reads. Each term therefore acts
as on overlay on everything previous, “hiding”
any older content from view. In the diagram
above, only the blocks with arrows pointing to
them represent data the user can still see. All
other blocks are hidden.

Deleting Overlaps

Main!
Store

Term!
N-1

Term!
N

User!
View

Partial!
Overlap

Full!
Overlap

Because data which is “covered” by a write in a
later term is no longer useful even for
reconciliation, it shouldn’t be included in filters
(described later) either. Special OVERLAPPED
events, similar to ROLLBACK events, are added
to reflect such changes. Note that for a partial
overlap this event might truncate or split the
original event instead of quashing it entirely.
These optimizations can all be done locally on
each replica.

Term Filters

GFID

Sub ID

mix hash Bloom!
Filter

data: block number!
entry: file name!
other: magic constants

We maintain and store a Bloom filter for each
term, to enable efficient determination of
whether the term contains anything at all relevant
to a subsequent read (or reconciliation). Each
data block, directory entry, or metadata field is
treated as a separate entity for filter purposes,
even if a single request affects multiple entities.
For each entity, we calculate a hash and use that
to populate the term’s Bloom filter.

 Global Filter

Term N-1 Filter

Term N Filter

XOR Global!
Filter

We also maintain a global filter, to determine
quickly whether any term still contains relevant
data for a read or reconciliation. To avoid “filter
pollution” the global filter is kept at a coarser
granularity than per-term filters by using only
GFIDs without futher refinement by sub-ID (e.g.
block number). We do calculate and store GFID-
only filters for each term, but only to enable
(re)calculation of the the global filter.

Reconciliation

Tracking Reconciliation
Replica A!
(leader)

Replica B! Replica C!
(dead)

Term 1234 9902 5319 9902

Term 1235 3122 3122 6157

Term 1236!
(current) 0 0 0

To track partial reconciliations and know when
the results eventually converge, we maintain a
table in etcd of unique IDs for each reconciliation
that has occurred. When all numbers for a term
are equal and non-zero, we’re fully reconciled. In
the above table, the two colored cells show
which replicas are still in need of reconciliation
for which term. We might be able to complete
reconciliation for B, so we try, but we can’t do
anything about C while it’s down.

Complete Reconciliation
Replica A!
(leader)

Replica B! Replica C!
(dead)

Term 1234 9902 9902 9902

Term 1235 3122 3122 6157

Term 1236!
(current) 0 0 0

In the above table, we have reconciled between
A and B for term 1234, and found no differences.
We therefore conclude that the two
reconciliation IDs represent equal states and
update B’s ID (from A’s) to reflect that. Because
C already had the now-shared reconciliation ID,
term 1234 is now completely reconciled.

Incomplete Reconciliation
Replica A!
(leader)

Replica B! Replica C!
(dead)

Term 1234 1740 1740 9902

Term 1235 3122 3122 6157

Term 1236!
(current) 0 0 0

This time we attempted the same reconciliation
as before, but found that there were differences
between A and B. Therefore we generate a new
reconciliation ID (1740) to represent equality
among the participants, and also represent the
new inequality between A and C (which still has
the old ID 9902). C is now the one that’s out of
date relative to everyone else, so replication isn’t
complete yet, but it can be completed by
reconciling with either A or B and finding no
changes.

