summaryrefslogtreecommitdiffstats
path: root/doc/debugging/statedump.md
blob: f34a5c3436ae14af95e52994235078a1e4b617ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#Statedump
Statedump is a file generated by glusterfs process with different data structure state which may contain the active inodes, fds, mempools, iobufs, memory allocation stats of different types of datastructures per xlator etc.

##How to generate statedump
We can find the directory where statedump files are created using 'gluster --print-statedumpdir' command.
Create that directory if not already present based on the type of installation.
Lets call this directory `statedump-directory`.

We can generate statedump using 'kill -USR1 <pid-of-gluster-process>'.
gluster-process is nothing but glusterd/glusterfs/glusterfsd process.

There are also commands to generate statedumps for brick processes/nfs server/quotad

For bricks:     `gluster volume statedump <volname>`

For nfs server: `gluster volume statedump <volname> nfs`

For quotad:     `gluster volume statedump <volname> quotad`

For brick-processes files will be created in `statedump-directory` with name of the file as `hyphenated-brick-path.<pid>.dump.timestamp`. For all other processes it will be `glusterdump.<pid>.dump.timestamp`.

##How to read statedump
We shall see snippets of each type of statedump.

First and last lines of the file have starting and ending time of writing the statedump file. Times will be in UTC timezone.

mallinfo return status is printed in the following format. Please read man mallinfo for more information about what each field means.
###Mallinfo
```
[mallinfo]
mallinfo_arena=100020224 /* Non-mmapped space allocated (bytes) */
mallinfo_ordblks=69467 /* Number of free chunks */
mallinfo_smblks=449 /* Number of free fastbin blocks */
mallinfo_hblks=13 /* Number of mmapped regions */
mallinfo_hblkhd=20144128 /* Space allocated in mmapped regions (bytes) */
mallinfo_usmblks=0 /* Maximum total allocated space (bytes) */
mallinfo_fsmblks=39264 /* Space in freed fastbin blocks (bytes) */
mallinfo_uordblks=96710112 /* Total allocated space (bytes) */
mallinfo_fordblks=3310112 /* Total free space (bytes) */
mallinfo_keepcost=133712 /* Top-most, releasable space (bytes) */
```

###Data structure allocation stats
For every xlator data structure memory per translator loaded in the call-graph is displayed in the following format:

For xlator with name: glusterfs
```
[global.glusterfs - Memory usage] #[global.xlator-name - Memory usage]
num_types=119 #It shows the number of data types it is using
```

Now for each data-type it prints the memory usage.

```
[global.glusterfs - usage-type gf_common_mt_gf_timer_t memusage]
#[global.xlator-name - usage-type <tag associated with the data-type> memusage]
size=112 #num_allocs times the sizeof(data-type) i.e. num_allocs * sizeof (data-type)
num_allocs=2 #Number of allocations of the data-type which are active at the time of taking statedump.
max_size=168 #max_num_allocs times the sizeof(data-type) i.e. max_num_allocs * sizeof (data-type)
max_num_allocs=3 #Maximum number of active allocations at any point in the life of the process.
total_allocs=7 #Number of times this data is allocated in the life of the process.
```

###Mempools

Mempools are optimization to reduce the number of allocations of a data type. If we create a mem-pool of lets say 1024 elements for a data-type, new elements will be allocated from heap using syscalls like calloc, only if all the 1024 elements in the pool are in active use.

Memory pool allocated by each xlator is displayed in the following format:

```
[mempool] #Section name
-----=-----
pool-name=fuse:fd_t #pool-name=<xlator-name>:<data-type>
hot-count=1 #number of mempool elements that are in active use. i.e. for this pool it is the number of 'fd_t' s in active use.
cold-count=1023 #number of mempool elements that are not in use. If a new allocation is required it will be served from here until all the elements in the pool are in use i.e. cold-count becomes 0.
padded_sizeof=108 #Each mempool element is padded with a doubly-linked-list + ptr of mempool + is-in-use info to operate the pool of elements, this size is the element-size after padding
pool-misses=0 #Number of times the element had to be allocated from heap because all elements from the pool are in active use.
alloc-count=314 #Number of times this type of data is allocated through out the life of this process. This may include pool-misses as well.
max-alloc=3 #Maximum number of elements from the pool in active use at any point in the life of the process. This does *not* include pool-misses.
cur-stdalloc=0 #Denotes the number of allocations made from heap once cold-count reaches 0, that are yet to be released via mem_put().
max-stdalloc=0 #Maximum number of allocations from heap that are in active use at any point in the life of the process.
```

###Iobufs
```
[iobuf.global]
iobuf_pool=0x1f0d970 #The memory pool for iobufs
iobuf_pool.default_page_size=131072 #The default size of iobuf (if no iobuf size is specified the default size is allocated)
#iobuf_arena: One arena represents a group of iobufs of a particular size
iobuf_pool.arena_size=12976128 # The initial size of the iobuf pool (doesn't include the stdalloc'd memory or the newly added arenas)
iobuf_pool.arena_cnt=8 #Total number of arenas in the pool
iobuf_pool.request_misses=0 #The number of iobufs that were stdalloc'd (as they exceeded the default max page size provided by iobuf_pool).
```

There are 3 lists of arenas

1. Arena list: arenas allocated during iobuf pool creation and the arenas that are in use(active_cnt != 0) will be part of this list.
2. Purge list: arenas that can be purged(no active iobufs, active_cnt == 0).
3. Filled list: arenas without free iobufs.

```
[purge.1] #purge.<S.No.>
purge.1.mem_base=0x7fc47b35f000 #The address of the arena structure
purge.1.active_cnt=0 #The number of iobufs active in that arena
purge.1.passive_cnt=1024 #The number of unused iobufs in the arena
purge.1.alloc_cnt=22853 #Total allocs in this pool(number of times the iobuf was allocated from this arena)
purge.1.max_active=7 #Max active iobufs from this arena, at any point in the life of this process.
purge.1.page_size=128 #Size of all the iobufs in this arena.

[arena.5] #arena.<S.No.>
arena.5.mem_base=0x7fc47af1f000
arena.5.active_cnt=0
arena.5.passive_cnt=64
arena.5.alloc_cnt=0
arena.5.max_active=0
arena.5.page_size=32768
```

If the active_cnt of any arena is non zero, then the statedump will also have the iobuf list.
```
[arena.6.active_iobuf.1] #arena.<S.No>.active_iobuf.<iobuf.S.No.>
arena.6.active_iobuf.1.ref=1 #refcount of the iobuf
arena.6.active_iobuf.1.ptr=0x7fdb921a9000 #address of the iobuf

[arena.6.active_iobuf.2]
arena.6.active_iobuf.2.ref=1
arena.6.active_iobuf.2.ptr=0x7fdb92189000
```

At any given point in time if there are lots of filled arenas then that could be a sign of iobuf leaks.

###Call stack
All the fops received by gluster are handled using call-stacks. Call stack contains the information about uid/gid/pid etc of the process that is executing the fop. Each call-stack contains different call-frames per xlator which handles that fop.

```
[global.callpool.stack.3] #global.callpool.stack.<Serial-Number>
stack=0x7fc47a44bbe0 #Stack address
uid=0 #Uid of the process which is executing the fop
gid=0 #Gid of the process which is executing the fop
pid=6223 #Pid of the process which is executing the fop
unique=2778 #Xlators like afr do copy_frame and perform the operation in a different stack, this id is useful to find out the stacks that are inter-related because of copy-frame
lk-owner=0000000000000000 #Some of the fuse fops have lk-owner.
op=LOOKUP #Fop
type=1 #Type of the op i.e. FOP/MGMT-OP
cnt=9 #Number of frames in this stack.
```
###Call-frame
Each frame will have information about which xlator the frame belongs to, what is the function it wound to/from and will be unwind to. It also mentions if the unwind happened or not. If we observe hangs in the system and want to find out which xlator is causing it. Take a statedump and see what is the final xlator which is yet to be unwound.

```
[global.callpool.stack.3.frame.2]#global.callpool.stack.<stack-serial-number>.frame.<frame-serial-number>
frame=0x7fc47a611dbc #Frame address
ref_count=0 #Incremented at the time of wind and decremented at the time of unwind.
translator=r2-client-1 #Xlator this frame belongs to
complete=0 #if this value is 1 that means this frame is already unwound. 0 if it is yet to unwind.
parent=r2-replicate-0 #Parent xlator of this frame
wind_from=afr_lookup #Parent xlator function from which the wind happened
wind_to=priv->children[i]->fops->lookup
unwind_to=afr_lookup_cbk #Parent xlator function to which unwind happened
```

###History of operations in Fuse

Fuse maintains history of operations that happened in fuse.

```
[xlator.mount.fuse.history]
TIME=2014-07-09 16:44:57.523364
message=[0] fuse_release: RELEASE(): 4590:, fd: 0x1fef0d8, gfid: 3afb4968-5100-478d-91e9-76264e634c9f

TIME=2014-07-09 16:44:57.523373
message=[0] send_fuse_err: Sending Success for operation 18 on inode 3afb4968-5100-478d-91e9-76264e634c9f

TIME=2014-07-09 16:44:57.523394
message=[0] fuse_getattr_resume: 4591, STAT, path: (/iozone.tmp), gfid: (3afb4968-5100-478d-91e9-76264e634c9f)
```

###Xlator configuration
```
[cluster/replicate.r2-replicate-0] #Xlator type, name information
child_count=2 #Number of children to the xlator
#Xlator specific configuration below
child_up[0]=1
pending_key[0]=trusted.afr.r2-client-0
child_up[1]=1
pending_key[1]=trusted.afr.r2-client-1
data_self_heal=on
metadata_self_heal=1
entry_self_heal=1
data_change_log=1
metadata_change_log=1
entry-change_log=1
read_child=1
favorite_child=-1
wait_count=1
```

###Graph/inode table
```
[active graph - 1]

conn.1.bound_xl./data/brick01a/homegfs.hashsize=14057
conn.1.bound_xl./data/brick01a/homegfs.name=/data/brick01a/homegfs/inode
conn.1.bound_xl./data/brick01a/homegfs.lru_limit=16384 #Least recently used size limit
conn.1.bound_xl./data/brick01a/homegfs.active_size=690 #Number of inodes undergoing some kind of fop to be precise on which there is at least one ref.
conn.1.bound_xl./data/brick01a/homegfs.lru_size=183 #Number of inodes present in lru list
conn.1.bound_xl./data/brick01a/homegfs.purge_size=0 #Number of inodes present in purge list
```

###Inode
```
[conn.1.bound_xl./data/brick01a/homegfs.active.324] #324th inode in active inode list
gfid=e6d337cf-97eb-44b3-9492-379ba3f6ad42 #Gfid of the inode
nlookup=13 #Number of times lookups happened from the client or from fuse kernel
fd-count=4 #Number of fds opened on the inode
ref=11 #Number of refs taken on the inode
ia_type=1 #Type of the inode. This should be changed to some string :-(

[conn.1.bound_xl./data/brick01a/homegfs.lru.1] #1st inode in lru list. Note that ref count is zero for these inodes.
gfid=5114574e-69bc-412b-9e52-f13ff087c6fc
nlookup=5
fd-count=0
ref=0
ia_type=2
```
###Inode context
For each inode per xlator some context could be stored. This context can also be printed in the statedump. Here is the inode ctx of locks xlator
```
[xlator.features.locks.homegfs-locks.inode]
path=/homegfs/users/dfrobins/gfstest/r4/SCRATCH/fort.5102 - path of the file
mandatory=0
inodelk-count=5 #Number of inode locks
lock-dump.domain.domain=homegfs-replicate-0:self-heal #Domain name where self-heals take locks to prevent more than one heal on the same file
inodelk.inodelk[0](ACTIVE)=type=WRITE, whence=0, start=0, len=0, pid = 18446744073709551615, owner=080b1ada117f0000, client=0xb7fc30, connection-id=compute-30-029.com-3505-2014/06/29-14:46:12:477358-homegfs-client-0-0-1, granted at Sun Jun 29 11:01:00 2014 #Active lock information

inodelk.inodelk[1](BLOCKED)=type=WRITE, whence=0, start=0, len=0, pid = 18446744073709551615, owner=c0cb091a277f0000, client=0xad4f10, connection-id=gfs01a.com-4080-2014/06/29-14:41:36:917768-homegfs-client-0-0-0, blocked at Sun Jun 29 11:04:44 2014 #Blocked lock information

lock-dump.domain.domain=homegfs-replicate-0:metadata #Domain name where metadata operations take locks to maintain replication consistency
lock-dump.domain.domain=homegfs-replicate-0 #Domain name where entry/data operations take locks to maintain replication consistency
inodelk.inodelk[0](ACTIVE)=type=WRITE, whence=0, start=11141120, len=131072, pid = 18446744073709551615, owner=080b1ada117f0000, client=0xb7fc30, connection-id=compute-30-029.com-3505-2014/06/29-14:46:12:477358-homegfs-client-0-0-1, granted at Sun Jun 29 11:10:36 2014 #Active lock information
```

##FAQ
###How to debug Memory leaks using statedump?

####Using memory accounting feature:

`https://bugzilla.redhat.com/show_bug.cgi?id=1120151` is one of the bugs which was debugged using statedump to see which data-structure is leaking. Here is the process used to find what the leak is using statedump. According to the bug the observation is that the process memory usage is increasing whenever one of the bricks is wiped in a replicate volume and a `full` self-heal is invoked to heal the contents. Statedump of the process is taken using kill -USR1 `<pid-of-gluster-self-heal-daemon>`.
```
grep -w num_allocs glusterdump.5225.dump.1405493251
num_allocs=77078
num_allocs=87070
num_allocs=117376
....

grep hot-count glusterdump.5225.dump.1405493251
hot-count=16384
hot-count=16384
hot-count=4095
....

Find the occurrences in the statedump file to figure out the tags.
```
grep of the statedump revealed too many allocations for the following data-types under replicate,

1. gf_common_mt_asprintf
2. gf_common_mt_char
3. gf_common_mt_mem_pool.

After checking afr-code for allocations with tag `gf_common_mt_char` found `data-self-heal` code path does not free one such allocated memory. `gf_common_mt_mem_pool` suggests that there is a leak in pool memory. `replicate-0:dict_t`, `glusterfs:data_t` and `glusterfs:data_pair_t` pools are using lot of memory, i.e. cold_count is `0` and too many allocations. Checking source code of dict.c revealed that `key` in `dict` is allocated with `gf_common_mt_char` i.e. `2.` tag and value is created using gf_asprintf which in-turn uses `gf_common_mt_asprintf` i.e. `1.`. Browsing the code for leak in self-heal code paths lead to a line which over-writes a variable with new dictionary even when it was already holding a reference to another dictionary. After fixing these leaks, ran the same test to verify that none of the `num_allocs` are increasing even after healing 10,000 files directory hierarchy in statedump of self-heal daemon.
Please check http://review.gluster.org/8316 for more info about patch/code.

####Debugging leaks in memory pools:
Statedump output of memory pools was used to test and verify the fixes to https://bugzilla.redhat.com/show_bug.cgi?id=1134221. On code analysis, dict_t objects were found to be leaking (in terms of not being unref'd enough number of times, during name self-heal. The test involved creating 100 files on plain replicate volume, removing them from one of the bricks's backend, and then triggering lookup on them from the mount point. Statedump of the mount process was taken before executing the test case and after it, after compiling glusterfs with -DDEBUG flags (to have cold count set to 0 by default).

Statedump output of the fuse mount process before the test case was executed:

```

pool-name=glusterfs:dict_t
hot-count=0
cold-count=0
padded_sizeof=140
alloc-count=33
max-alloc=0
pool-misses=33
cur-stdalloc=14
max-stdalloc=18

```
Statedump output of the fuse mount process after the test case was executed:

```

pool-name=glusterfs:dict_t
hot-count=0
cold-count=0
padded_sizeof=140
alloc-count=2841
max-alloc=0
pool-misses=2841
cur-stdalloc=214
max-stdalloc=220

```
Here, with cold count being 0 by default, cur-stdalloc indicated the number of dict_t objects that were allocated in heap using mem_get(), and yet to be freed using mem_put() (refer to https://github.com/gluster/glusterfs/blob/master/doc/data-structures/mem-pool.md for more details on how mempool works). After the test case (name selfheal of 100 files), there was a rise in the cur-stdalloc value (from 14 to 214) for dict_t.

After these leaks were fixed, glusterfs was again compiled with -DDEBUG flags, and the same steps were performed again and statedump was taken before and after executing the test case, of the mount. This was done to ascertain the validity of the fix. And the following are the results:

Statedump output of the fuse mount process before executing the test case:

```
pool-name=glusterfs:dict_t
hot-count=0
cold-count=0
padded_sizeof=140
alloc-count=33
max-alloc=0
pool-misses=33
cur-stdalloc=14
max-stdalloc=18

```
Statedump output of the fuse mount process after executing the test case:

```
pool-name=glusterfs:dict_t
hot-count=0
cold-count=0
padded_sizeof=140
alloc-count=2837
max-alloc=0
pool-misses=2837
cur-stdalloc=14
max-stdalloc=119

```
The value of cur-stdalloc remained 14 before and after the test, indicating that the fix indeed does what it's supposed to do.

###How to debug hangs because of frame-loss?
`https://bugzilla.redhat.com/show_bug.cgi?id=994959` is one of the bugs where statedump was helpful in finding where the frame was lost. Here is the process used to find where the hang is using statedump.
When the hang was observed, statedumps are taken for all the processes. On mount's statedump the following stack is shown:
```
[global.callpool.stack.1.frame.1]
ref_count=1
translator=fuse
complete=0

[global.callpool.stack.1.frame.2]
ref_count=0
translator=r2-client-1
complete=1 <<----- Client xlator completed the readdirp call and unwound to afr
parent=r2-replicate-0
wind_from=afr_do_readdir
wind_to=children[call_child]->fops->readdirp
unwind_from=client3_3_readdirp_cbk
unwind_to=afr_readdirp_cbk

[global.callpool.stack.1.frame.3]
ref_count=0
translator=r2-replicate-0
complete=0 <<---- Afr xlator is not unwinding for some reason.
parent=r2-dht
wind_from=dht_do_readdir
wind_to=xvol->fops->readdirp
unwind_to=dht_readdirp_cbk

[global.callpool.stack.1.frame.4]
ref_count=1
translator=r2-dht
complete=0
parent=r2-io-cache
wind_from=ioc_readdirp
wind_to=FIRST_CHILD(this)->fops->readdirp
unwind_to=ioc_readdirp_cbk

[global.callpool.stack.1.frame.5]
ref_count=1
translator=r2-io-cache
complete=0
parent=r2-quick-read
wind_from=qr_readdirp
wind_to=FIRST_CHILD (this)->fops->readdirp
unwind_to=qr_readdirp_cbk

```
`unwind_to` shows that call was unwound to `afr_readdirp_cbk` from client xlator.
Inspecting that function revealed that afr is not unwinding the stack when fop failed.
Check http://review.gluster.org/5531 for more info about patch/code changes.