summaryrefslogtreecommitdiffstats
path: root/libglusterfs/src/mem-pool.c
blob: 8bd9779ce81d57d9dd7e7c41decc7b16fd0bab40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
/*
  Copyright (c) 2008-2012 Red Hat, Inc. <http://www.redhat.com>
  This file is part of GlusterFS.

  This file is licensed to you under your choice of the GNU Lesser
  General Public License, version 3 or any later version (LGPLv3 or
  later), or the GNU General Public License, version 2 (GPLv2), in all
  cases as published by the Free Software Foundation.
*/

#include "mem-pool.h"
#include "logging.h"
#include "xlator.h"
#include <stdlib.h>
#include <stdarg.h>

#include "unittest/unittest.h"
#include "libglusterfs-messages.h"

void
gf_mem_acct_enable_set (void *data)
{
        glusterfs_ctx_t *ctx = NULL;

        REQUIRE(data != NULL);

        ctx = data;

        GF_ASSERT (ctx != NULL);

        ctx->mem_acct_enable = 1;

        ENSURE(1 == ctx->mem_acct_enable);

        return;
}

int
gf_mem_set_acct_info (xlator_t *xl, char **alloc_ptr, size_t size,
		      uint32_t type, const char *typestr)
{

        void              *ptr    = NULL;
        struct mem_header *header = NULL;

        if (!alloc_ptr)
                return -1;

        ptr = *alloc_ptr;

        GF_ASSERT (xl != NULL);

        GF_ASSERT (xl->mem_acct != NULL);

        GF_ASSERT (type <= xl->mem_acct->num_types);

        LOCK(&xl->mem_acct->rec[type].lock);
        {
		if (!xl->mem_acct->rec[type].typestr)
			xl->mem_acct->rec[type].typestr = typestr;
                xl->mem_acct->rec[type].size += size;
                xl->mem_acct->rec[type].num_allocs++;
                xl->mem_acct->rec[type].total_allocs++;
                xl->mem_acct->rec[type].max_size =
                        max (xl->mem_acct->rec[type].max_size,
                             xl->mem_acct->rec[type].size);
                xl->mem_acct->rec[type].max_num_allocs =
                        max (xl->mem_acct->rec[type].max_num_allocs,
                             xl->mem_acct->rec[type].num_allocs);
        }
        UNLOCK(&xl->mem_acct->rec[type].lock);

        GF_ATOMIC_INC (xl->mem_acct->refcnt);

        header = (struct mem_header *) ptr;
        header->type = type;
        header->size = size;
        header->mem_acct = xl->mem_acct;
        header->magic = GF_MEM_HEADER_MAGIC;

        ptr += sizeof (struct mem_header);

        /* data follows in this gap of 'size' bytes */
        *(uint32_t *) (ptr + size) = GF_MEM_TRAILER_MAGIC;

        *alloc_ptr = ptr;
        return 0;
}


void *
__gf_calloc (size_t nmemb, size_t size, uint32_t type, const char *typestr)
{
        size_t          tot_size = 0;
        size_t          req_size = 0;
        char            *ptr = NULL;
        xlator_t        *xl = NULL;

        if (!THIS->ctx->mem_acct_enable)
                return CALLOC (nmemb, size);

        xl = THIS;

        req_size = nmemb * size;
        tot_size = req_size + GF_MEM_HEADER_SIZE + GF_MEM_TRAILER_SIZE;

        ptr = calloc (1, tot_size);

        if (!ptr) {
                gf_msg_nomem ("", GF_LOG_ALERT, tot_size);
                return NULL;
        }
        gf_mem_set_acct_info (xl, &ptr, req_size, type, typestr);

        return (void *)ptr;
}

void *
__gf_malloc (size_t size, uint32_t type, const char *typestr)
{
        size_t          tot_size = 0;
        char            *ptr = NULL;
        xlator_t        *xl = NULL;

        if (!THIS->ctx->mem_acct_enable)
                return MALLOC (size);

        xl = THIS;

        tot_size = size + GF_MEM_HEADER_SIZE + GF_MEM_TRAILER_SIZE;

        ptr = malloc (tot_size);
        if (!ptr) {
                gf_msg_nomem ("", GF_LOG_ALERT, tot_size);
                return NULL;
        }
        gf_mem_set_acct_info (xl, &ptr, size, type, typestr);

        return (void *)ptr;
}

void *
__gf_realloc (void *ptr, size_t size)
{
        size_t             tot_size = 0;
        char              *new_ptr;
        struct mem_header *old_header = NULL;
        struct mem_header *new_header = NULL;
        struct mem_header  tmp_header;

        if (!THIS->ctx->mem_acct_enable)
                return REALLOC (ptr, size);

        REQUIRE(NULL != ptr);

        old_header = (struct mem_header *) (ptr - GF_MEM_HEADER_SIZE);
        GF_ASSERT (old_header->magic == GF_MEM_HEADER_MAGIC);
        tmp_header = *old_header;

        tot_size = size + GF_MEM_HEADER_SIZE + GF_MEM_TRAILER_SIZE;
        new_ptr = realloc (old_header, tot_size);
        if (!new_ptr) {
                gf_msg_nomem ("", GF_LOG_ALERT, tot_size);
                return NULL;
        }

        /*
         * We used to pass (char **)&ptr as the second
         * argument after the value of realloc was saved
         * in ptr, but the compiler warnings complained
         * about the casting to and forth from void ** to
         * char **.
         * TBD: it would be nice to adjust the memory accounting info here,
         * but calling gf_mem_set_acct_info here is wrong because it bumps
         * up counts as though this is a new allocation - which it's not.
         * The consequence of doing nothing here is only that the sizes will be
         * wrong, but at least the counts won't be.
        uint32_t           type = 0;
        xlator_t          *xl = NULL;
        type = header->type;
        xl = (xlator_t *) header->xlator;
        gf_mem_set_acct_info (xl, &new_ptr, size, type, NULL);
         */

        new_header = (struct mem_header *) new_ptr;
        *new_header = tmp_header;
        new_header->size = size;

        new_ptr += sizeof (struct mem_header);
        /* data follows in this gap of 'size' bytes */
        *(uint32_t *) (new_ptr + size) = GF_MEM_TRAILER_MAGIC;

        return (void *)new_ptr;
}

int
gf_vasprintf (char **string_ptr, const char *format, va_list arg)
{
        va_list arg_save;
        char    *str = NULL;
        int     size = 0;
        int     rv = 0;

        if (!string_ptr || !format)
                return -1;

        va_copy (arg_save, arg);

        size = vsnprintf (NULL, 0, format, arg);
        size++;
        str = GF_MALLOC (size, gf_common_mt_asprintf);
        if (str == NULL) {
                /* log is done in GF_MALLOC itself */
                va_end (arg_save);
                return -1;
        }
        rv = vsnprintf (str, size, format, arg_save);

        *string_ptr = str;
        va_end (arg_save);
        return (rv);
}

int
gf_asprintf (char **string_ptr, const char *format, ...)
{
        va_list arg;
        int     rv = 0;

        va_start (arg, format);
        rv = gf_vasprintf (string_ptr, format, arg);
        va_end (arg);

        return rv;
}

#ifdef DEBUG
void
__gf_mem_invalidate (void *ptr)
{
        struct mem_header *header = ptr;
        void              *end    = NULL;

        struct mem_invalid inval = {
                .magic = GF_MEM_INVALID_MAGIC,
                .mem_acct = header->mem_acct,
                .type = header->type,
                .size = header->size,
                .baseaddr = ptr + GF_MEM_HEADER_SIZE,
        };

        /* calculate the last byte of the allocated area */
        end = ptr + GF_MEM_HEADER_SIZE + inval.size + GF_MEM_TRAILER_SIZE;

        /* overwrite the old mem_header */
        memcpy (ptr, &inval, sizeof (inval));
        ptr += sizeof (inval);

        /* zero out remaining (old) mem_header bytes) */
        memset (ptr, 0x00, sizeof (*header) - sizeof (inval));
        ptr += sizeof (*header) - sizeof (inval);

        /* zero out the first byte of data */
        *(uint32_t *)(ptr) = 0x00;
        ptr += 1;

        /* repeated writes of invalid structurein data area */
        while ((ptr + (sizeof (inval))) < (end - 1)) {
                memcpy (ptr, &inval, sizeof (inval));
                ptr += sizeof (inval);
        }

        /* fill out remaining data area with 0xff */
        memset (ptr, 0xff, end - ptr);
}
#endif /* DEBUG */

void
__gf_free (void *free_ptr)
{
        void              *ptr = NULL;
        struct mem_acct   *mem_acct;
        struct mem_header *header = NULL;

        if (!THIS->ctx->mem_acct_enable) {
                FREE (free_ptr);
                return;
        }

        if (!free_ptr)
                return;

        ptr = free_ptr - GF_MEM_HEADER_SIZE;
        header = (struct mem_header *) ptr;

        //Possible corruption, assert here
        GF_ASSERT (GF_MEM_HEADER_MAGIC == header->magic);

        mem_acct = header->mem_acct;
        if (!mem_acct) {
                goto free;
        }

        // This points to a memory overrun
        GF_ASSERT (GF_MEM_TRAILER_MAGIC ==
                *(uint32_t *)((char *)free_ptr + header->size));

        LOCK (&mem_acct->rec[header->type].lock);
        {
                mem_acct->rec[header->type].size -= header->size;
                mem_acct->rec[header->type].num_allocs--;
                /* If all the instances are freed up then ensure typestr is set
                 * to NULL */
                if (!mem_acct->rec[header->type].num_allocs)
                        mem_acct->rec[header->type].typestr = NULL;
        }
        UNLOCK (&mem_acct->rec[header->type].lock);

        if (GF_ATOMIC_DEC (mem_acct->refcnt) == 0) {
                FREE (mem_acct);
        }

free:
#ifdef DEBUG
        __gf_mem_invalidate (ptr);
#endif

        FREE (ptr);
}


/*
 * Based on the mem-type that is used for the allocation, GF_FREE can be
 * called, or something more intelligent for the structure can be done.
 *
 * NOTE: this will not work for allocations from a memory pool.  It never did,
 * because those allocations never set the type in the first place.  Any caller
 * that relies on knowing whether a particular type was allocated via a pool or
 * not is *BROKEN*, or will be any time either this module or the module
 * "owning" the type changes.  The proper way to handle this, assuming the
 * caller is not smart enough to call a type-specific free function themselves,
 * would be to create a callback interface where destructors for specific types
 * can be registered so that code *here* (GF_FREE, mem_put, etc.) can do the
 * right thing.  That allows type-specific behavior without creating the kind
 * of fragile coupling that we have now.
 */
int
gf_get_mem_type (void *ptr)
{
        struct mem_header *header = NULL;

        if (!ptr || !THIS->ctx->mem_acct_enable)
                return 0;

        header = (struct mem_header *) (ptr - GF_MEM_HEADER_SIZE);

        /* Possible corruption, assert here */
        GF_ASSERT (GF_MEM_HEADER_MAGIC == header->magic);

        return header->type;
}


#define POOL_SMALLEST   7       /* i.e. 128 */
#define POOL_LARGEST    20      /* i.e. 1048576 */
#define NPOOLS          (POOL_LARGEST - POOL_SMALLEST + 1)

static pthread_key_t            pool_key;
static pthread_mutex_t          pool_lock       = PTHREAD_MUTEX_INITIALIZER;
static struct list_head         pool_threads;
static pthread_mutex_t          pool_free_lock  = PTHREAD_MUTEX_INITIALIZER;
static struct list_head         pool_free_threads;
static struct mem_pool_shared   pools[NPOOLS];
static size_t                   pool_list_size;

#if !defined(GF_DISABLE_MEMPOOL)
#define N_COLD_LISTS    1024
#define POOL_SWEEP_SECS 30

static unsigned long            sweep_times;
static unsigned long            sweep_usecs;
static unsigned long            frees_to_system;

typedef struct {
        struct list_head        death_row;
        pooled_obj_hdr_t        *cold_lists[N_COLD_LISTS];
        unsigned int            n_cold_lists;
} sweep_state_t;

enum init_state {
        GF_MEMPOOL_INIT_NONE = 0,
        GF_MEMPOOL_INIT_PREINIT,
        GF_MEMPOOL_INIT_EARLY,
        GF_MEMPOOL_INIT_LATE,
        GF_MEMPOOL_INIT_DESTROY
};

static enum init_state  init_done       = GF_MEMPOOL_INIT_NONE;
static pthread_mutex_t  init_mutex      = PTHREAD_MUTEX_INITIALIZER;
static unsigned int     init_count      = 0;
static pthread_t        sweeper_tid;


void
collect_garbage (sweep_state_t *state, per_thread_pool_list_t *pool_list)
{
        unsigned int            i;
        per_thread_pool_t       *pt_pool;

        if (pool_list->poison) {
                list_del (&pool_list->thr_list);
                list_add (&pool_list->thr_list, &state->death_row);
                return;
        }

        if (state->n_cold_lists >= N_COLD_LISTS) {
                return;
        }

        (void) pthread_spin_lock (&pool_list->lock);
        for (i = 0; i < NPOOLS; ++i) {
                pt_pool = &pool_list->pools[i];
                if (pt_pool->cold_list) {
                        state->cold_lists[state->n_cold_lists++]
                                = pt_pool->cold_list;
                }
                pt_pool->cold_list = pt_pool->hot_list;
                pt_pool->hot_list = NULL;
                if (state->n_cold_lists >= N_COLD_LISTS) {
                        /* We'll just catch up on a future pass. */
                        break;
                }
        }
        (void) pthread_spin_unlock (&pool_list->lock);
}


void
free_obj_list (pooled_obj_hdr_t *victim)
{
        pooled_obj_hdr_t        *next;

        while (victim) {
                next = victim->next;
                free (victim);
                victim = next;
                ++frees_to_system;
        }
}

void *
pool_sweeper (void *arg)
{
        sweep_state_t           state;
        per_thread_pool_list_t  *pool_list;
        per_thread_pool_list_t  *next_pl;
        per_thread_pool_t       *pt_pool;
        unsigned int            i;
        struct timeval          begin_time;
        struct timeval          end_time;
        struct timeval          elapsed;

        /*
         * This is all a bit inelegant, but the point is to avoid doing
         * expensive things (like freeing thousands of objects) while holding a
         * global lock.  Thus, we split each iteration into three passes, with
         * only the first and fastest holding the lock.
         */

        for (;;) {
                sleep (POOL_SWEEP_SECS);
                (void) pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, NULL);
                INIT_LIST_HEAD (&state.death_row);
                state.n_cold_lists = 0;

                /* First pass: collect stuff that needs our attention. */
                (void) gettimeofday (&begin_time, NULL);
                (void) pthread_mutex_lock (&pool_lock);
                list_for_each_entry_safe (pool_list, next_pl,
                                          &pool_threads, thr_list) {
                        collect_garbage (&state, pool_list);
                }
                (void) pthread_mutex_unlock (&pool_lock);
                (void) gettimeofday (&end_time, NULL);
                timersub (&end_time, &begin_time, &elapsed);
                sweep_usecs += elapsed.tv_sec * 1000000 + elapsed.tv_usec;
                sweep_times += 1;

                /* Second pass: free dead pools. */
                (void) pthread_mutex_lock (&pool_free_lock);
                list_for_each_entry_safe (pool_list, next_pl,
                                          &state.death_row, thr_list) {
                        for (i = 0; i < NPOOLS; ++i) {
                                pt_pool = &pool_list->pools[i];
                                free_obj_list (pt_pool->cold_list);
                                free_obj_list (pt_pool->hot_list);
                                pt_pool->hot_list = pt_pool->cold_list = NULL;
                        }
                        list_del (&pool_list->thr_list);
                        list_add (&pool_list->thr_list, &pool_free_threads);
                }
                (void) pthread_mutex_unlock (&pool_free_lock);

                /* Third pass: free cold objects from live pools. */
                for (i = 0; i < state.n_cold_lists; ++i) {
                        free_obj_list (state.cold_lists[i]);
                }
                (void) pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, NULL);
        }
}


void
pool_destructor (void *arg)
{
        per_thread_pool_list_t  *pool_list      = arg;

        /* The pool-sweeper thread will take it from here. */
        pool_list->poison = 1;
}


static __attribute__((constructor)) void
mem_pools_preinit (void)
{
        unsigned int    i;

        INIT_LIST_HEAD (&pool_threads);
        INIT_LIST_HEAD (&pool_free_threads);

        for (i = 0; i < NPOOLS; ++i) {
                pools[i].power_of_two = POOL_SMALLEST + i;

                GF_ATOMIC_INIT (pools[i].allocs_hot, 0);
                GF_ATOMIC_INIT (pools[i].allocs_cold, 0);
                GF_ATOMIC_INIT (pools[i].allocs_stdc, 0);
                GF_ATOMIC_INIT (pools[i].frees_to_list, 0);
        }

        pool_list_size = sizeof (per_thread_pool_list_t)
                       + sizeof (per_thread_pool_t) * (NPOOLS - 1);

        init_done = GF_MEMPOOL_INIT_PREINIT;
}

/* Use mem_pools_init_early() function for basic initialization. There will be
 * no cleanup done by the pool_sweeper thread until mem_pools_init_late() has
 * been called. Calling mem_get() will be possible after this function has
 * setup the basic structures. */
void
mem_pools_init_early (void)
{
        pthread_mutex_lock (&init_mutex);
        /* Use a pthread_key destructor to clean up when a thread exits.
         *
         * We won't increase init_count here, that is only done when the
         * pool_sweeper thread is started too.
         */
        if (init_done == GF_MEMPOOL_INIT_PREINIT ||
            init_done == GF_MEMPOOL_INIT_DESTROY) {
                /* key has not been created yet */
                if (pthread_key_create (&pool_key, pool_destructor) != 0) {
                        gf_log ("mem-pool", GF_LOG_CRITICAL,
                                "failed to initialize mem-pool key");
                }

                init_done = GF_MEMPOOL_INIT_EARLY;
        } else {
                gf_log ("mem-pool", GF_LOG_CRITICAL,
                        "incorrect order of mem-pool initialization "
                        "(init_done=%d)", init_done);
        }

        pthread_mutex_unlock (&init_mutex);
}

/* Call mem_pools_init_late() once threading has been configured completely.
 * This prevent the pool_sweeper thread from getting killed once the main()
 * thread exits during deamonizing. */
void
mem_pools_init_late (void)
{
        pthread_mutex_lock (&init_mutex);
        if ((init_count++) == 0) {
                (void) gf_thread_create (&sweeper_tid, NULL, pool_sweeper,
                                         NULL, "memsweep");

                init_done = GF_MEMPOOL_INIT_LATE;
        }
        pthread_mutex_unlock (&init_mutex);
}

void
mem_pools_fini (void)
{
        pthread_mutex_lock (&init_mutex);
        switch (init_count) {
        case 0:
                /*
                 * If init_count is already zero (as e.g. if somebody called
                 * this before mem_pools_init_late) then the sweeper was
                 * probably never even started so we don't need to stop it.
                 * Even if there's some crazy circumstance where there is a
                 * sweeper but init_count is still zero, that just means we'll
                 * leave it running.  Not perfect, but far better than any
                 * known alternative.
                 */
                break;
        case 1:
        {
                per_thread_pool_list_t *pool_list;
                per_thread_pool_list_t *next_pl;
                unsigned int            i;

                /* if only mem_pools_init_early() was called, sweeper_tid will
                 * be invalid and the functions will error out. That is not
                 * critical. In all other cases, the sweeper_tid will be valid
                 * and the thread gets stopped. */
                (void) pthread_cancel (sweeper_tid);
                (void) pthread_join (sweeper_tid, NULL);

                /* Need to clean the pool_key to prevent further usage of the
                 * per_thread_pool_list_t structure that is stored for each
                 * thread.
                 * This also prevents calling pool_destructor() when a thread
                 * exits, so there is no chance on a use-after-free of the
                 * per_thread_pool_list_t structure. */
                (void) pthread_key_delete (pool_key);

                /* free all objects from all pools */
                list_for_each_entry_safe (pool_list, next_pl,
                                          &pool_threads, thr_list) {
                        for (i = 0; i < NPOOLS; ++i) {
                                free_obj_list (pool_list->pools[i].hot_list);
                                free_obj_list (pool_list->pools[i].cold_list);
                                pool_list->pools[i].hot_list = NULL;
                                pool_list->pools[i].cold_list = NULL;
                        }

                        list_del (&pool_list->thr_list);
                        FREE (pool_list);
                }

                list_for_each_entry_safe (pool_list, next_pl,
                                          &pool_free_threads, thr_list) {
                        list_del (&pool_list->thr_list);
                        FREE (pool_list);
                }

                init_done = GF_MEMPOOL_INIT_DESTROY;
                /* Fall through. */
        }
        default:
                --init_count;
        }
        pthread_mutex_unlock (&init_mutex);
}

#else
void mem_pools_init_early (void) {}
void mem_pools_init_late (void) {}
void mem_pools_fini (void) {}
#endif

struct mem_pool *
mem_pool_new_fn (unsigned long sizeof_type,
                 unsigned long count, char *name)
{
        unsigned int            i;
        struct mem_pool         *new = NULL;
        struct mem_pool_shared  *pool = NULL;

        if (!sizeof_type) {
                gf_msg_callingfn ("mem-pool", GF_LOG_ERROR, EINVAL,
                                  LG_MSG_INVALID_ARG, "invalid argument");
                return NULL;
        }

        for (i = 0; i < NPOOLS; ++i) {
                if (sizeof_type <= AVAILABLE_SIZE(pools[i].power_of_two)) {
                        pool = &pools[i];
                        break;
                }
        }

        if (!pool) {
                gf_msg_callingfn ("mem-pool", GF_LOG_ERROR, EINVAL,
                                  LG_MSG_INVALID_ARG, "invalid argument");
                return NULL;
        }

        new = GF_CALLOC (sizeof (struct mem_pool), 1, gf_common_mt_mem_pool);
        if (!new)
                return NULL;

        new->sizeof_type = sizeof_type;
        new->count = count;
        new->name = name;
        new->pool = pool;

        return new;
}

void*
mem_get0 (struct mem_pool *mem_pool)
{
        void             *ptr = NULL;

        if (!mem_pool) {
                gf_msg_callingfn ("mem-pool", GF_LOG_ERROR, EINVAL,
                                  LG_MSG_INVALID_ARG, "invalid argument");
                return NULL;
        }

        ptr = mem_get(mem_pool);

        if (ptr) {
                memset (ptr, 0, AVAILABLE_SIZE(mem_pool->pool->power_of_two));
        }

        return ptr;
}


per_thread_pool_list_t *
mem_get_pool_list (void)
{
        per_thread_pool_list_t  *pool_list;
        unsigned int            i;

        pool_list = pthread_getspecific (pool_key);
        if (pool_list) {
                return pool_list;
        }

        (void) pthread_mutex_lock (&pool_free_lock);
        if (!list_empty (&pool_free_threads)) {
                pool_list = list_entry (pool_free_threads.next,
                                        per_thread_pool_list_t, thr_list);
                list_del (&pool_list->thr_list);
        }
        (void) pthread_mutex_unlock (&pool_free_lock);

        if (!pool_list) {
                pool_list = CALLOC (pool_list_size, 1);
                if (!pool_list) {
                        return NULL;
                }

                INIT_LIST_HEAD (&pool_list->thr_list);
                (void) pthread_spin_init (&pool_list->lock,
                                          PTHREAD_PROCESS_PRIVATE);
                for (i = 0; i < NPOOLS; ++i) {
                        pool_list->pools[i].parent = &pools[i];
                        pool_list->pools[i].hot_list = NULL;
                        pool_list->pools[i].cold_list = NULL;
                }
        }

        (void) pthread_mutex_lock (&pool_lock);
        pool_list->poison = 0;
        list_add (&pool_list->thr_list, &pool_threads);
        (void) pthread_mutex_unlock (&pool_lock);

        (void) pthread_setspecific (pool_key, pool_list);
        return pool_list;
}

pooled_obj_hdr_t *
mem_get_from_pool (per_thread_pool_t *pt_pool)
{
        pooled_obj_hdr_t        *retval;

        retval = pt_pool->hot_list;
        if (retval) {
                GF_ATOMIC_INC (pt_pool->parent->allocs_hot);
                pt_pool->hot_list = retval->next;
                return retval;
        }

        retval = pt_pool->cold_list;
        if (retval) {
                GF_ATOMIC_INC (pt_pool->parent->allocs_cold);
                pt_pool->cold_list = retval->next;
                return retval;
        }

        GF_ATOMIC_INC (pt_pool->parent->allocs_stdc);
        return malloc (1 << pt_pool->parent->power_of_two);
}


void *
mem_get (struct mem_pool *mem_pool)
{
#if defined(GF_DISABLE_MEMPOOL)
        return GF_CALLOC (1, AVAILABLE_SIZE (mem_pool->pool->power_of_two),
                          gf_common_mt_mem_pool);
#else
        per_thread_pool_list_t  *pool_list;
        per_thread_pool_t       *pt_pool;
        pooled_obj_hdr_t        *retval;

        if (!mem_pool) {
                gf_msg_callingfn ("mem-pool", GF_LOG_ERROR, EINVAL,
                                  LG_MSG_INVALID_ARG, "invalid argument");
                return NULL;
        }

        pool_list = mem_get_pool_list ();
        if (!pool_list || pool_list->poison) {
                return NULL;
        }

        (void) pthread_spin_lock (&pool_list->lock);
        pt_pool = &pool_list->pools[mem_pool->pool->power_of_two-POOL_SMALLEST];
        retval = mem_get_from_pool (pt_pool);
        (void) pthread_spin_unlock (&pool_list->lock);

        if (!retval) {
                return NULL;
        }

        retval->magic = GF_MEM_HEADER_MAGIC;
        retval->pool = mem_pool;
        retval->pool_list = pool_list;
        retval->power_of_two = mem_pool->pool->power_of_two;

        return retval + 1;
#endif /* GF_DISABLE_MEMPOOL */
}


void
mem_put (void *ptr)
{
#if defined(GF_DISABLE_MEMPOOL)
        GF_FREE (ptr);
#else
        pooled_obj_hdr_t        *hdr;
        per_thread_pool_list_t  *pool_list;
        per_thread_pool_t       *pt_pool;

        if (!ptr) {
                gf_msg_callingfn ("mem-pool", GF_LOG_ERROR, EINVAL,
                                  LG_MSG_INVALID_ARG, "invalid argument");
                return;
        }

        hdr = ((pooled_obj_hdr_t *)ptr) - 1;
        if (hdr->magic != GF_MEM_HEADER_MAGIC) {
                /* Not one of ours; don't touch it. */
                return;
        }
        pool_list = hdr->pool_list;
        pt_pool = &pool_list->pools[hdr->power_of_two-POOL_SMALLEST];

        (void) pthread_spin_lock (&pool_list->lock);
        hdr->magic = GF_MEM_INVALID_MAGIC;
        hdr->next = pt_pool->hot_list;
        pt_pool->hot_list = hdr;
        GF_ATOMIC_INC (pt_pool->parent->frees_to_list);
        (void) pthread_spin_unlock (&pool_list->lock);
#endif /* GF_DISABLE_MEMPOOL */
}

void
mem_pool_destroy (struct mem_pool *pool)
{
        GF_FREE (pool);

        /*
         * Pools are now permanent, so the mem_pool->pool is kept around. All
         * of the objects *in* the pool will eventually be freed via the
         * pool-sweeper thread, and this way we don't have to add a lot of
         * reference-counting complexity.
         */
}