1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
/*
Copyright (c) 2012 DataLab, s.l. <http://www.datalab.es>
This file is part of the cluster/ec translator for GlusterFS.
The cluster/ec translator for GlusterFS is free software: you can
redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.
The cluster/ec translator for GlusterFS is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the cluster/ec translator for GlusterFS. If not, see
<http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <inttypes.h>
#include "ec-method.h"
#define EC_METHOD_WORD_SIZE 16
static uint32_t GfPow[EC_METHOD_SIZE << 1];
static uint32_t GfLog[EC_METHOD_SIZE << 1];
void ec_method_initialize(void)
{
uint32_t i;
GfPow[0] = 1;
GfLog[0] = EC_METHOD_SIZE;
for (i = 1; i < EC_METHOD_SIZE; i++)
{
GfPow[i] = GfPow[i - 1] << 1;
if (GfPow[i] >= EC_METHOD_SIZE)
{
GfPow[i] ^= EC_GF_MOD;
}
GfPow[i + EC_METHOD_SIZE - 1] = GfPow[i];
GfLog[GfPow[i] + EC_METHOD_SIZE - 1] = GfLog[GfPow[i]] = i;
}
}
static uint32_t ec_method_mul(uint32_t a, uint32_t b)
{
if (a && b)
{
return GfPow[GfLog[a] + GfLog[b]];
}
return 0;
}
static uint32_t ec_method_div(uint32_t a, uint32_t b)
{
if (b)
{
if (a)
{
return GfPow[EC_METHOD_SIZE - 1 + GfLog[a] - GfLog[b]];
}
return 0;
}
return EC_METHOD_SIZE;
}
size_t ec_method_encode(size_t size, uint32_t columns, uint32_t row,
uint8_t * in, uint8_t * out)
{
uint32_t i, j;
size /= EC_METHOD_CHUNK_SIZE * columns;
row++;
for (j = 0; j < size; j++)
{
ec_gf_load(in);
in += EC_METHOD_CHUNK_SIZE;
for (i = 1; i < columns; i++)
{
ec_gf_mul_table[row]();
ec_gf_xor(in);
in += EC_METHOD_CHUNK_SIZE;
}
ec_gf_store(out);
out += EC_METHOD_CHUNK_SIZE;
}
return size * EC_METHOD_CHUNK_SIZE;
}
size_t ec_method_decode(size_t size, uint32_t columns, uint32_t * rows,
uint8_t ** in, uint8_t * out)
{
uint32_t i, j, k;
uint32_t f, off;
uint8_t inv[EC_METHOD_MAX_FRAGMENTS][EC_METHOD_MAX_FRAGMENTS + 1];
uint8_t mtx[EC_METHOD_MAX_FRAGMENTS][EC_METHOD_MAX_FRAGMENTS];
uint8_t * p[EC_METHOD_MAX_FRAGMENTS];
size /= EC_METHOD_CHUNK_SIZE;
memset(inv, 0, sizeof(inv));
memset(mtx, 0, sizeof(mtx));
for (i = 0; i < columns; i++)
{
inv[i][i] = 1;
inv[i][columns] = 1;
}
k = 0;
for (i = 0; i < columns; i++)
{
mtx[k][columns - 1] = 1;
for (j = columns - 1; j > 0; j--)
{
mtx[k][j - 1] = ec_method_mul(mtx[k][j], rows[i] + 1);
}
p[k] = in[i];
k++;
}
for (i = 0; i < columns; i++)
{
f = mtx[i][i];
for (j = 0; j < columns; j++)
{
mtx[i][j] = ec_method_div(mtx[i][j], f);
inv[i][j] = ec_method_div(inv[i][j], f);
}
for (j = 0; j < columns; j++)
{
if (i != j)
{
f = mtx[j][i];
for (k = 0; k < columns; k++)
{
mtx[j][k] ^= ec_method_mul(mtx[i][k], f);
inv[j][k] ^= ec_method_mul(inv[i][k], f);
}
}
}
}
off = 0;
for (f = 0; f < size; f++)
{
for (i = 0; i < columns; i++)
{
ec_gf_load(p[0] + off);
j = 0;
while (j < columns)
{
k = j + 1;
while (inv[i][k] == 0)
{
k++;
}
ec_gf_mul_table[ec_method_div(inv[i][j], inv[i][k])]();
if (k < columns)
{
ec_gf_xor(p[k] + off);
}
j = k;
}
ec_gf_store(out);
out += EC_METHOD_CHUNK_SIZE;
in[i] += EC_METHOD_CHUNK_SIZE;
}
off += EC_METHOD_CHUNK_SIZE;
}
return size * EC_METHOD_CHUNK_SIZE * columns;
}
|