summaryrefslogtreecommitdiffstats
path: root/xlators/encryption/crypt/src/data.c
blob: 8b467bf2c60d561fa174c89360ca8d2c0d80efe5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
/*
  Copyright (c) 2008-2013 Red Hat, Inc. <http://www.redhat.com>
  This file is part of GlusterFS.

  This file is licensed to you under your choice of the GNU Lesser
  General Public License, version 3 or any later version (LGPLv3 or
  later), or the GNU General Public License, version 2 (GPLv2), in all
  cases as published by the Free Software Foundation.
*/

#include "defaults.h"
#include "crypt-common.h"
#include "crypt.h"

static void set_iv_aes_xts(off_t offset, struct object_cipher_info *object)
{
	unsigned char *ivec;

	ivec = object->u.aes_xts.ivec;

	/* convert the tweak into a little-endian byte
	 * array (IEEE P1619/D16, May 2007, section 5.1)
	 */

	*((uint64_t *)ivec) = htole64(offset);

	/* ivec is padded with zeroes */
}

static int32_t aes_set_keys_common(unsigned char *raw_key, uint32_t key_size,
				   AES_KEY *keys)
{
	int32_t ret;

	ret = AES_set_encrypt_key(raw_key,
				  key_size,
				  &keys[AES_ENCRYPT]);
	if (ret) {
		gf_log("crypt", GF_LOG_ERROR, "Set encrypt key failed");
		return ret;
	}
	ret = AES_set_decrypt_key(raw_key,
				  key_size,
				  &keys[AES_DECRYPT]);
	if (ret) {
		gf_log("crypt", GF_LOG_ERROR, "Set decrypt key failed");
		return ret;
	}
	return 0;
}

/*
 * set private cipher info for xts mode
 */
static int32_t set_private_aes_xts(struct crypt_inode_info *info,
				   struct master_cipher_info *master)
{
	int ret;
	struct object_cipher_info *object = get_object_cinfo(info);
	unsigned char *data_key;
	uint32_t subkey_size;

	/* init tweak value */
	memset(object->u.aes_xts.ivec, 0, 16);

	data_key = GF_CALLOC(1, object->o_dkey_size, gf_crypt_mt_key);
	if (!data_key)
		return ENOMEM;

	/*
	 * retrieve data keying meterial
	 */
	ret = get_data_file_key(info, master, object->o_dkey_size, data_key);
	if (ret) {
		gf_log("crypt", GF_LOG_ERROR, "Failed to retrieve data key");
		GF_FREE(data_key);
		return ret;
	}
	/*
	 * parse compound xts key
	 */
	subkey_size = object->o_dkey_size >> 4; /* (xts-key-size-in-bytes / 2) */
	/*
	 * install key for data encryption
	 */
	ret = aes_set_keys_common(data_key,
				  subkey_size << 3, object->u.aes_xts.dkey);
	if (ret) {
		GF_FREE(data_key);
		return ret;
	}
	/*
	 * set up key used to encrypt tweaks
	 */
	ret = AES_set_encrypt_key(data_key + subkey_size,
				  object->o_dkey_size / 2,
				  &object->u.aes_xts.tkey);
	if (ret < 0)
		gf_log("crypt", GF_LOG_ERROR, "Set tweak key failed");

	GF_FREE(data_key);
	return ret;
}

static int32_t aes_xts_init(void)
{
	cassert(AES_BLOCK_SIZE == (1 << AES_BLOCK_BITS));
	return 0;
}

static int32_t check_key_aes_xts(uint32_t keysize)
{
	switch(keysize) {
	case 256:
	case 512:
		return 0;
	default:
		break;
	}
	return -1;
}

static int32_t encrypt_aes_xts(const unsigned char *from,
			       unsigned char *to, size_t length,
			       off_t offset, const int enc,
			       struct object_cipher_info *object)
{
	XTS128_CONTEXT ctx;
	if (enc) {
		ctx.key1 = &object->u.aes_xts.dkey[AES_ENCRYPT];
		ctx.block1 = (block128_f)AES_encrypt;
	}
	else {
		ctx.key1 = &object->u.aes_xts.dkey[AES_DECRYPT];
		ctx.block1 = (block128_f)AES_decrypt;
	}
	ctx.key2 = &object->u.aes_xts.tkey;
	ctx.block2 = (block128_f)AES_encrypt;

	return CRYPTO_xts128_encrypt(&ctx,
				     object->u.aes_xts.ivec,
				     from,
				     to,
				     length, enc);
}

/*
 * Cipher input chunk @from of length @len;
 * @to: result of cipher transform;
 * @off: offset in a file (must be cblock-aligned);
 */
static void cipher_data(struct object_cipher_info *object,
			char *from,
			char *to,
			off_t off,
			size_t len,
			const int enc)
{
	crypt_check_input_len(len, object);

#if TRIVIAL_TFM && DEBUG_CRYPT
	return;
#endif
	data_cipher_algs[object->o_alg][object->o_mode].set_iv(off, object);
	data_cipher_algs[object->o_alg][object->o_mode].encrypt
		((const unsigned char *)from,
		 (unsigned char *)to,
		 len,
		 off,
		 enc,
		 object);
}

#define MAX_CIPHER_CHUNK (1 << 30)

/*
 * Do cipher (encryption/decryption) transform of a
 * continuous region of memory.
 *
 * @len: a number of bytes to transform;
 * @buf: data to transform;
 * @off: offset in a file, should be block-aligned
 *       for atomic cipher modes and ksize-aligned
 *       for other modes).
 * @dir: direction of transform (encrypt/decrypt).
 */
static void cipher_region(struct object_cipher_info *object,
			  char *from,
			  char *to,
			  off_t off,
			  size_t len,
			  int dir)
{
	while (len > 0) {
		size_t to_cipher;

		to_cipher = len;
		if (to_cipher > MAX_CIPHER_CHUNK)
			to_cipher = MAX_CIPHER_CHUNK;

		/* this will reset IV */
		cipher_data(object,
			    from,
			    to,
			    off,
			    to_cipher,
			    dir);
		from += to_cipher;
		to   += to_cipher;
		off  += to_cipher;
		len  -= to_cipher;
	}
}

/*
 * Do cipher transform (encryption/decryption) of
 * plaintext/ciphertext represented by @vec.
 *
 * Pre-conditions: @vec represents a continuous piece
 * of data in a file at offset @off to be ciphered
 * (encrypted/decrypted).
 * @count is the number of vec's components. All the
 * components must be block-aligned, the caller is
 * responsible for this. @dir is "direction" of
 * transform (encrypt/decrypt).
 */
static void cipher_aligned_iov(struct object_cipher_info *object,
			       struct iovec *vec,
			       int count,
			       off_t off,
			       int32_t dir)
{
	int i;
	int len = 0;

	for (i = 0; i < count; i++) {
		cipher_region(object,
			      vec[i].iov_base,
			      vec[i].iov_base,
			      off + len,
			      vec[i].iov_len,
			      dir);
		len += vec[i].iov_len;
	}
}

void encrypt_aligned_iov(struct object_cipher_info *object,
			 struct iovec *vec,
			 int count,
			 off_t off)
{
	cipher_aligned_iov(object, vec, count, off, 1);
}

void decrypt_aligned_iov(struct object_cipher_info *object,
			 struct iovec *vec,
			 int count,
			 off_t off)
{
	cipher_aligned_iov(object, vec, count, off, 0);
}

#if DEBUG_CRYPT
static void compound_stream(struct iovec *vec, int count, char *buf, off_t skip)
{
	int i;
	int off = 0;
	for (i = 0; i < count; i++) {
		memcpy(buf + off,
		       vec[i].iov_base + skip,
		       vec[i].iov_len - skip);

		off += (vec[i].iov_len - skip);
		skip = 0;
	}
}

static void check_iovecs(struct iovec *vec, int cnt,
			 struct iovec *avec, int acnt, uint32_t off_in_head)
{
	char *s1, *s2;
	uint32_t size, asize;

	size = iov_length(vec, cnt);
	asize = iov_length(avec, acnt) - off_in_head;
	if (size != asize) {
		gf_log("crypt", GF_LOG_DEBUG, "size %d is not eq asize %d",
		       size, asize);
		return;
	}
	s1 = GF_CALLOC(1, size, gf_crypt_mt_data);
	if (!s1) {
		gf_log("crypt", GF_LOG_DEBUG, "Can not allocate stream ");
		return;
	}
	s2 = GF_CALLOC(1, asize, gf_crypt_mt_data);
	if (!s2) {
		GF_FREE(s1);
		gf_log("crypt", GF_LOG_DEBUG, "Can not allocate stream ");
		return;
	}
	compound_stream(vec, cnt, s1, 0);
	compound_stream(avec, acnt, s2, off_in_head);
	if (memcmp(s1, s2, size))
		gf_log("crypt", GF_LOG_DEBUG, "chunks of different data");
	GF_FREE(s1);
	GF_FREE(s2);
}

#else
#define check_iovecs(vec, count, avec, avecn, off) noop
#endif /* DEBUG_CRYPT */

static char *data_alloc_block(xlator_t *this, crypt_local_t *local,
			      int32_t block_size)
{
	struct iobuf *iobuf = NULL;

	iobuf = iobuf_get2(this->ctx->iobuf_pool, block_size);
	if (!iobuf) {
		gf_log("crypt", GF_LOG_ERROR,
		       "Failed to get iobuf");
		return NULL;
	}
	if (!local->iobref_data) {
		local->iobref_data = iobref_new();
		if (!local->iobref_data) {
			gf_log("crypt", GF_LOG_ERROR,
			       "Failed to get iobref");
			iobuf_unref(iobuf);
			return NULL;
		}
	}
	iobref_add(local->iobref_data, iobuf);
	return iobuf->ptr;
}

/*
 * Compound @avec, which represent the same data
 * chunk as @vec, but has aligned components of
 * specified block size. Alloc blocks, if needed.
 * In particular, incomplete head and tail blocks
 * must be allocated.
 * Put number of allocated blocks to @num_blocks.
 *
 * Example:
 *
 * input: data chunk represented by 4 components
 * [AB],[BC],[CD],[DE];
 * output: 5 logical blocks (0, 1, 2, 3, 4).
 *
 *   A     B       C     D               E
 *   *-----*+------*-+---*----+--------+-*
 *   |     ||      | |   |    |        | |
 * *-+-----+*------+-*---+----*--------*-+------*
 * 0        1        2        3        4
 *
 * 0 - incomplete compound (head);
 * 1, 2 - full compound;
 * 3 - full non-compound (the case of reuse);
 * 4 - incomplete non-compound (tail).
 */
int32_t align_iov_by_atoms(xlator_t *this,
			   crypt_local_t *local,
			   struct object_cipher_info *object,
			   struct iovec *vec /* input vector */,
			   int32_t count /* number of vec components */,
			   struct iovec *avec /* aligned vector */,
			   char **blocks /* pool of blocks */,
			   uint32_t *blocks_allocated,
			   struct avec_config *conf)
{
	int vecn = 0;      /* number of the current component in vec */
	int avecn = 0;     /* number of the current component in avec */
	off_t vec_off = 0; /* offset in the current vec component,
			    * i.e. the number of bytes have already
			    * been copied */
	int32_t block_size = get_atom_size(object);
	size_t to_process; /* number of vec's bytes to copy and(or) re-use */
	int32_t off_in_head = conf->off_in_head;

	to_process = iov_length(vec, count);

	while (to_process > 0) {
		if (off_in_head ||
		    vec[vecn].iov_len - vec_off < block_size) {
			/*
			 * less than block_size:
			 * the case of incomplete (head or tail),
			 * or compound block
			 */
			size_t copied = 0;
			/*
			 * populate the pool with a new block
			 */
			blocks[*blocks_allocated] = data_alloc_block(this,
								    local,
								    block_size);
			if (!blocks[*blocks_allocated])
				return -ENOMEM;
			memset(blocks[*blocks_allocated], 0, off_in_head);
			/*
			 * fill the block with vec components
			 */
			do {
				size_t to_copy;

				to_copy = vec[vecn].iov_len - vec_off;
				if (to_copy > block_size - off_in_head)
					to_copy = block_size - off_in_head;

				memcpy(blocks[*blocks_allocated] + off_in_head + copied,
				       vec[vecn].iov_base + vec_off,
				       to_copy);

				copied += to_copy;
				to_process -= to_copy;

				vec_off += to_copy;
				if (vec_off == vec[vecn].iov_len) {
					/* finished with this vecn */
					vec_off = 0;
					vecn++;
				}
			} while (copied < (block_size - off_in_head) && to_process > 0);
			/*
			 * update avec
			 */
			avec[avecn].iov_len = off_in_head + copied;
			avec[avecn].iov_base = blocks[*blocks_allocated];

			(*blocks_allocated)++;
			off_in_head = 0;
		} else {
			/*
			 * the rest of the current vec component
			 * is not less than block_size, so reuse
			 * the memory buffer of the component.
			 */
			size_t to_reuse;
			to_reuse = (to_process > block_size ?
				    block_size :
				    to_process);
			avec[avecn].iov_len = to_reuse;
			avec[avecn].iov_base = vec[vecn].iov_base + vec_off;

			vec_off += to_reuse;
			if (vec_off == vec[vecn].iov_len) {
				/* finished with this vecn */
				vec_off = 0;
				vecn++;
			}
			to_process -= to_reuse;
		}
		avecn++;
	}
	check_iovecs(vec, count, avec, avecn, conf->off_in_head);
	return 0;
}

/*
 * allocate and setup aligned vector for data submission
 * Pre-condition: @conf is set.
 */
int32_t set_config_avec_data(xlator_t *this,
			     crypt_local_t *local,
			     struct avec_config *conf,
			     struct object_cipher_info *object,
			     struct iovec *vec,
			     int32_t vec_count)
{
	int32_t ret = ENOMEM;
	struct iovec *avec;
	char **pool;
	uint32_t blocks_in_pool = 0;

	conf->type = DATA_ATOM;

	avec = GF_CALLOC(conf->acount, sizeof(*avec), gf_crypt_mt_iovec);
	if (!avec)
		return ret;
	pool = GF_CALLOC(conf->acount, sizeof(pool), gf_crypt_mt_char);
	if (!pool) {
		GF_FREE(avec);
		return ret;
	}
	if (!vec) {
		/*
		 * degenerated case: no data
		 */
		pool[0] = data_alloc_block(this, local, get_atom_size(object));
		if (!pool[0])
			goto free;
		blocks_in_pool = 1;
		avec->iov_base = pool[0];
		avec->iov_len = conf->off_in_tail;
	}
	else {
		ret = align_iov_by_atoms(this, local, object, vec, vec_count,
					 avec, pool, &blocks_in_pool, conf);
		if (ret)
			goto free;
	}
	conf->avec = avec;
	conf->pool = pool;
	conf->blocks_in_pool = blocks_in_pool;
	return 0;
 free:
	GF_FREE(avec);
	GF_FREE(pool);
	return ret;
}

/*
 * allocate and setup aligned vector for hole submission
 */
int32_t set_config_avec_hole(xlator_t *this,
			     crypt_local_t *local,
			     struct avec_config *conf,
			     struct object_cipher_info *object,
			     glusterfs_fop_t fop)
{
	uint32_t i, idx;
	struct iovec *avec;
	char **pool;
	uint32_t num_blocks;
	uint32_t blocks_in_pool = 0;

	conf->type = HOLE_ATOM;

	num_blocks = conf->acount -
		(conf->nr_full_blocks ? conf->nr_full_blocks - 1 : 0);

	switch (fop) {
	case GF_FOP_WRITE:
		/*
		 * hole goes before data
		 */
		if (num_blocks == 1 && conf->off_in_tail != 0)
		/*
		 * we won't submit a hole which fits into
		 * a data atom: this part of hole will be
		 * submitted with data write
		 */
			return 0;
		break;
	case GF_FOP_FTRUNCATE:
		/*
		 * expanding truncate, hole goes after data,
		 * and will be submited in any case.
 		 */
		break;
	default:
		gf_log("crypt", GF_LOG_WARNING,
		       "bad file operation %d", fop);
		return 0;
	}
	avec = GF_CALLOC(num_blocks, sizeof(*avec), gf_crypt_mt_iovec);
	if (!avec)
		return ENOMEM;
	pool = GF_CALLOC(num_blocks, sizeof(pool), gf_crypt_mt_char);
	if (!pool) {
		GF_FREE(avec);
		return ENOMEM;
	}
	for (i = 0; i < num_blocks; i++) {
		pool[i] = data_alloc_block(this, local, get_atom_size(object));
		if (pool[i] == NULL)
			goto free;
		blocks_in_pool++;
	}
	if (has_head_block(conf)) {
		/* set head block */
		idx = 0;
		avec[idx].iov_base = pool[idx];
		avec[idx].iov_len = get_atom_size(object);
		memset(avec[idx].iov_base + conf->off_in_head,
		       0,
		       get_atom_size(object) - conf->off_in_head);
	}
	if (has_tail_block(conf)) {
		/* set tail block */
		idx = num_blocks - 1;
		avec[idx].iov_base = pool[idx];
		avec[idx].iov_len = get_atom_size(object);
		memset(avec[idx].iov_base, 0, conf->off_in_tail);
	}
	if (has_full_blocks(conf)) {
		/* set full block */
		idx = conf->off_in_head ? 1 : 0;
		avec[idx].iov_base = pool[idx];
		avec[idx].iov_len = get_atom_size(object);
		/*
		 * since we re-use the buffer,
		 * zeroes will be set every time
		 * before encryption, see submit_full()
		 */
	}
	conf->avec = avec;
	conf->pool = pool;
	conf->blocks_in_pool = blocks_in_pool;
	return 0;
 free:
	GF_FREE(avec);
	GF_FREE(pool);
	return ENOMEM;
}

/* A helper for setting up config of partial atoms (which
 * participate in read-modify-write sequence).
 *
 * Calculate and setup precise amount of "extra-bytes"
 * that should be uptodated at the end of partial (not
 * necessarily tail!) block.
 *
 * Pre-condition: local->old_file_size is valid!
 * @conf contains setup, which is enough for correct calculation
 * of has_tail_block(), ->get_offset().
 */
void set_gap_at_end(call_frame_t *frame, struct object_cipher_info *object,
		    struct avec_config *conf, atom_data_type dtype)
{
	uint32_t to_block;
	crypt_local_t *local = frame->local;
	uint64_t old_file_size = local->old_file_size;
	struct rmw_atom *partial = atom_by_types(dtype,
						 has_tail_block(conf) ?
						 TAIL_ATOM : HEAD_ATOM);

	if (old_file_size <= partial->offset_at(frame, object))
		to_block = 0;
	else {
		to_block = old_file_size - partial->offset_at(frame, object);
		if (to_block > get_atom_size(object))
			to_block = get_atom_size(object);
	}
	if (to_block > conf->off_in_tail)
		conf->gap_in_tail = to_block - conf->off_in_tail;
	else
		/*
		 * nothing to uptodate
		 */
		conf->gap_in_tail = 0;
}

/*
 * fill struct avec_config with offsets layouts
 */
void set_config_offsets(call_frame_t *frame,
			xlator_t *this,
			uint64_t offset,
			uint64_t count,
			atom_data_type dtype,
			int32_t set_gap)
{
	crypt_local_t *local;
	struct object_cipher_info *object;
	struct avec_config *conf;
	uint32_t resid;

	uint32_t atom_size;
	uint32_t atom_bits;

	size_t orig_size;
	off_t orig_offset;
	size_t expanded_size;
	off_t aligned_offset;

	uint32_t off_in_head = 0;
	uint32_t off_in_tail = 0;
	uint32_t nr_full_blocks;
	int32_t size_full_blocks;

	uint32_t acount; /* number of alifned components to write.
			  * The same as number of occupied logical
			  * blocks (atoms)
			  */
	local = frame->local;
	object = &local->info->cinfo;
	conf = (dtype == DATA_ATOM ?
		get_data_conf(frame) : get_hole_conf(frame));

	orig_offset = offset;
	orig_size = count;

	atom_size = get_atom_size(object);
	atom_bits = get_atom_bits(object);

	/*
	 * Round-down the start,
	 * round-up the end.
	 */
	resid = offset & (uint64_t)(atom_size - 1);

	if (resid)
		off_in_head = resid;
	aligned_offset = offset - off_in_head;
	expanded_size = orig_size + off_in_head;

	/* calculate tail,
	   expand size forward  */
	resid = (offset + orig_size) & (uint64_t)(atom_size - 1);

	if (resid) {
		off_in_tail = resid;
		expanded_size += (atom_size - off_in_tail);
	}
	/*
	 * calculate number of occupied blocks
	 */
	acount = expanded_size >> atom_bits;
	/*
	 * calculate number of full blocks
	 */
	size_full_blocks = expanded_size;
	if (off_in_head)
		size_full_blocks -= atom_size;
	if (off_in_tail && size_full_blocks > 0)
		size_full_blocks -= atom_size;
	nr_full_blocks = size_full_blocks >> atom_bits;

	conf->atom_size = atom_size;
	conf->orig_size = orig_size;
	conf->orig_offset = orig_offset;
	conf->expanded_size = expanded_size;
	conf->aligned_offset = aligned_offset;

	conf->off_in_head = off_in_head;
	conf->off_in_tail = off_in_tail;
	conf->nr_full_blocks = nr_full_blocks;
	conf->acount = acount;
	/*
	 * Finally, calculate precise amount of
	 * "extra-bytes" that should be uptodated
	 * at the end.
	 * Only if RMW is expected.
	 */
	if (off_in_tail && set_gap)
		set_gap_at_end(frame, object, conf, dtype);
}

struct data_cipher_alg data_cipher_algs[LAST_CIPHER_ALG][LAST_CIPHER_MODE] = {
	[AES_CIPHER_ALG][XTS_CIPHER_MODE] =
	{ .atomic = _gf_true,
	  .should_pad = _gf_true,
	  .blkbits = AES_BLOCK_BITS,
	  .init = aes_xts_init,
	  .set_private = set_private_aes_xts,
	  .check_key = check_key_aes_xts,
	  .set_iv = set_iv_aes_xts,
	  .encrypt = encrypt_aes_xts
	}
};

/*
  Local variables:
  c-indentation-style: "K&R"
  mode-name: "LC"
  c-basic-offset: 8
  tab-width: 8
  fill-column: 80
  scroll-step: 1
  End:
*/