summaryrefslogtreecommitdiffstats
path: root/contrib
diff options
context:
space:
mode:
authorCsaba Henk <csaba@gluster.com>2011-09-20 16:20:18 +0200
committerVijay Bellur <vijay@gluster.com>2011-09-22 05:24:41 -0700
commitb27b9d36de798bb18eaa95524f3900f9e17ce3e5 (patch)
tree7357344c289afee7a196fbc8d01b4f56ae2a5d86 /contrib
parentd7c9d2bfbd20727f90b0118c982ff9612aacacf2 (diff)
geo-rep: implement IP address based access control
- gsyncd gets allow-network tunable which is expected to hold a comma-separated list of IP network addresses - for IP addess matching, bring in ipaddr module from Google (http://code.google.com/p/ipaddr-py/, rev. trunk@225) This will let users control master's access to slave's volumes until we implement unprivileged geo-rep (delayed due to some technical issues). It's also needed for the completeness of our hardening efforts, as plain file slaves won't be able to work with an unprivileged gsyncd. Change-Id: I58431cba6592f8672e93ea89a5eef478905b00b9 BUG: 2825 Reviewed-on: http://review.gluster.com/488 Tested-by: Gluster Build System <jenkins@build.gluster.com> Reviewed-by: Vijay Bellur <vijay@gluster.com>
Diffstat (limited to 'contrib')
-rw-r--r--contrib/ipaddr-py/COPYING202
-rw-r--r--contrib/ipaddr-py/MANIFEST.in3
-rw-r--r--contrib/ipaddr-py/OWNERS4
-rw-r--r--contrib/ipaddr-py/README8
-rw-r--r--contrib/ipaddr-py/ipaddr.py1907
-rwxr-xr-xcontrib/ipaddr-py/ipaddr_test.py1099
-rwxr-xr-xcontrib/ipaddr-py/setup.py36
-rwxr-xr-xcontrib/ipaddr-py/test-2to3.sh15
8 files changed, 3274 insertions, 0 deletions
diff --git a/contrib/ipaddr-py/COPYING b/contrib/ipaddr-py/COPYING
new file mode 100644
index 000000000..d64569567
--- /dev/null
+++ b/contrib/ipaddr-py/COPYING
@@ -0,0 +1,202 @@
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/contrib/ipaddr-py/MANIFEST.in b/contrib/ipaddr-py/MANIFEST.in
new file mode 100644
index 000000000..f57280444
--- /dev/null
+++ b/contrib/ipaddr-py/MANIFEST.in
@@ -0,0 +1,3 @@
+include COPYING
+include ipaddr_test.py
+include RELEASENOTES
diff --git a/contrib/ipaddr-py/OWNERS b/contrib/ipaddr-py/OWNERS
new file mode 100644
index 000000000..501673e03
--- /dev/null
+++ b/contrib/ipaddr-py/OWNERS
@@ -0,0 +1,4 @@
+pmoody
+harro
+mshields
+smart
diff --git a/contrib/ipaddr-py/README b/contrib/ipaddr-py/README
new file mode 100644
index 000000000..1b54294bb
--- /dev/null
+++ b/contrib/ipaddr-py/README
@@ -0,0 +1,8 @@
+ipaddr.py is a library for working with IP addresses, both IPv4 and IPv6.
+It was developed by Google for internal use, and is now open source.
+
+Project home page: http://code.google.com/p/ipaddr-py/
+
+Please send contributions to ipaddr-py-dev@googlegroups.com. Code should
+include unit tests and follow the Google Python style guide:
+http://code.google.com/p/soc/wiki/PythonStyleGuide
diff --git a/contrib/ipaddr-py/ipaddr.py b/contrib/ipaddr-py/ipaddr.py
new file mode 100644
index 000000000..a89298a31
--- /dev/null
+++ b/contrib/ipaddr-py/ipaddr.py
@@ -0,0 +1,1907 @@
+#!/usr/bin/python
+#
+# Copyright 2007 Google Inc.
+# Licensed to PSF under a Contributor Agreement.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+# implied. See the License for the specific language governing
+# permissions and limitations under the License.
+
+"""A fast, lightweight IPv4/IPv6 manipulation library in Python.
+
+This library is used to create/poke/manipulate IPv4 and IPv6 addresses
+and networks.
+
+"""
+
+__version__ = 'trunk'
+
+import struct
+
+IPV4LENGTH = 32
+IPV6LENGTH = 128
+
+
+class AddressValueError(ValueError):
+ """A Value Error related to the address."""
+
+
+class NetmaskValueError(ValueError):
+ """A Value Error related to the netmask."""
+
+
+def IPAddress(address, version=None):
+ """Take an IP string/int and return an object of the correct type.
+
+ Args:
+ address: A string or integer, the IP address. Either IPv4 or
+ IPv6 addresses may be supplied; integers less than 2**32 will
+ be considered to be IPv4 by default.
+ version: An Integer, 4 or 6. If set, don't try to automatically
+ determine what the IP address type is. important for things
+ like IPAddress(1), which could be IPv4, '0.0.0.1', or IPv6,
+ '::1'.
+
+ Returns:
+ An IPv4Address or IPv6Address object.
+
+ Raises:
+ ValueError: if the string passed isn't either a v4 or a v6
+ address.
+
+ """
+ if version:
+ if version == 4:
+ return IPv4Address(address)
+ elif version == 6:
+ return IPv6Address(address)
+
+ try:
+ return IPv4Address(address)
+ except (AddressValueError, NetmaskValueError):
+ pass
+
+ try:
+ return IPv6Address(address)
+ except (AddressValueError, NetmaskValueError):
+ pass
+
+ raise ValueError('%r does not appear to be an IPv4 or IPv6 address' %
+ address)
+
+
+def IPNetwork(address, version=None, strict=False):
+ """Take an IP string/int and return an object of the correct type.
+
+ Args:
+ address: A string or integer, the IP address. Either IPv4 or
+ IPv6 addresses may be supplied; integers less than 2**32 will
+ be considered to be IPv4 by default.
+ version: An Integer, if set, don't try to automatically
+ determine what the IP address type is. important for things
+ like IPNetwork(1), which could be IPv4, '0.0.0.1/32', or IPv6,
+ '::1/128'.
+
+ Returns:
+ An IPv4Network or IPv6Network object.
+
+ Raises:
+ ValueError: if the string passed isn't either a v4 or a v6
+ address. Or if a strict network was requested and a strict
+ network wasn't given.
+
+ """
+ if version:
+ if version == 4:
+ return IPv4Network(address, strict)
+ elif version == 6:
+ return IPv6Network(address, strict)
+
+ try:
+ return IPv4Network(address, strict)
+ except (AddressValueError, NetmaskValueError):
+ pass
+
+ try:
+ return IPv6Network(address, strict)
+ except (AddressValueError, NetmaskValueError):
+ pass
+
+ raise ValueError('%r does not appear to be an IPv4 or IPv6 network' %
+ address)
+
+
+def v4_int_to_packed(address):
+ """The binary representation of this address.
+
+ Args:
+ address: An integer representation of an IPv4 IP address.
+
+ Returns:
+ The binary representation of this address.
+
+ Raises:
+ ValueError: If the integer is too large to be an IPv4 IP
+ address.
+ """
+ if address > _BaseV4._ALL_ONES:
+ raise ValueError('Address too large for IPv4')
+ return struct.pack('!I', address)
+
+
+def v6_int_to_packed(address):
+ """The binary representation of this address.
+
+ Args:
+ address: An integer representation of an IPv4 IP address.
+
+ Returns:
+ The binary representation of this address.
+ """
+ return struct.pack('!QQ', address >> 64, address & (2**64 - 1))
+
+
+def _find_address_range(addresses):
+ """Find a sequence of addresses.
+
+ Args:
+ addresses: a list of IPv4 or IPv6 addresses.
+
+ Returns:
+ A tuple containing the first and last IP addresses in the sequence.
+
+ """
+ first = last = addresses[0]
+ for ip in addresses[1:]:
+ if ip._ip == last._ip + 1:
+ last = ip
+ else:
+ break
+ return (first, last)
+
+def _get_prefix_length(number1, number2, bits):
+ """Get the number of leading bits that are same for two numbers.
+
+ Args:
+ number1: an integer.
+ number2: another integer.
+ bits: the maximum number of bits to compare.
+
+ Returns:
+ The number of leading bits that are the same for two numbers.
+
+ """
+ for i in range(bits):
+ if number1 >> i == number2 >> i:
+ return bits - i
+ return 0
+
+def _count_righthand_zero_bits(number, bits):
+ """Count the number of zero bits on the right hand side.
+
+ Args:
+ number: an integer.
+ bits: maximum number of bits to count.
+
+ Returns:
+ The number of zero bits on the right hand side of the number.
+
+ """
+ if number == 0:
+ return bits
+ for i in range(bits):
+ if (number >> i) % 2:
+ return i
+
+def summarize_address_range(first, last):
+ """Summarize a network range given the first and last IP addresses.
+
+ Example:
+ >>> summarize_address_range(IPv4Address('1.1.1.0'),
+ IPv4Address('1.1.1.130'))
+ [IPv4Network('1.1.1.0/25'), IPv4Network('1.1.1.128/31'),
+ IPv4Network('1.1.1.130/32')]
+
+ Args:
+ first: the first IPv4Address or IPv6Address in the range.
+ last: the last IPv4Address or IPv6Address in the range.
+
+ Returns:
+ The address range collapsed to a list of IPv4Network's or
+ IPv6Network's.
+
+ Raise:
+ TypeError:
+ If the first and last objects are not IP addresses.
+ If the first and last objects are not the same version.
+ ValueError:
+ If the last object is not greater than the first.
+ If the version is not 4 or 6.
+
+ """
+ if not (isinstance(first, _BaseIP) and isinstance(last, _BaseIP)):
+ raise TypeError('first and last must be IP addresses, not networks')
+ if first.version != last.version:
+ raise TypeError("%s and %s are not of the same version" % (
+ str(first), str(last)))
+ if first > last:
+ raise ValueError('last IP address must be greater than first')
+
+ networks = []
+
+ if first.version == 4:
+ ip = IPv4Network
+ elif first.version == 6:
+ ip = IPv6Network
+ else:
+ raise ValueError('unknown IP version')
+
+ ip_bits = first._max_prefixlen
+ first_int = first._ip
+ last_int = last._ip
+ while first_int <= last_int:
+ nbits = _count_righthand_zero_bits(first_int, ip_bits)
+ current = None
+ while nbits >= 0:
+ addend = 2**nbits - 1
+ current = first_int + addend
+ nbits -= 1
+ if current <= last_int:
+ break
+ prefix = _get_prefix_length(first_int, current, ip_bits)
+ net = ip('%s/%d' % (str(first), prefix))
+ networks.append(net)
+ if current == ip._ALL_ONES:
+ break
+ first_int = current + 1
+ first = IPAddress(first_int, version=first._version)
+ return networks
+
+def _collapse_address_list_recursive(addresses):
+ """Loops through the addresses, collapsing concurrent netblocks.
+
+ Example:
+
+ ip1 = IPv4Network('1.1.0.0/24')
+ ip2 = IPv4Network('1.1.1.0/24')
+ ip3 = IPv4Network('1.1.2.0/24')
+ ip4 = IPv4Network('1.1.3.0/24')
+ ip5 = IPv4Network('1.1.4.0/24')
+ ip6 = IPv4Network('1.1.0.1/22')
+
+ _collapse_address_list_recursive([ip1, ip2, ip3, ip4, ip5, ip6]) ->
+ [IPv4Network('1.1.0.0/22'), IPv4Network('1.1.4.0/24')]
+
+ This shouldn't be called directly; it is called via
+ collapse_address_list([]).
+
+ Args:
+ addresses: A list of IPv4Network's or IPv6Network's
+
+ Returns:
+ A list of IPv4Network's or IPv6Network's depending on what we were
+ passed.
+
+ """
+ ret_array = []
+ optimized = False
+
+ for cur_addr in addresses:
+ if not ret_array:
+ ret_array.append(cur_addr)
+ continue
+ if cur_addr in ret_array[-1]:
+ optimized = True
+ elif cur_addr == ret_array[-1].supernet().subnet()[1]:
+ ret_array.append(ret_array.pop().supernet())
+ optimized = True
+ else:
+ ret_array.append(cur_addr)
+
+ if optimized:
+ return _collapse_address_list_recursive(ret_array)
+
+ return ret_array
+
+
+def collapse_address_list(addresses):
+ """Collapse a list of IP objects.
+
+ Example:
+ collapse_address_list([IPv4('1.1.0.0/24'), IPv4('1.1.1.0/24')]) ->
+ [IPv4('1.1.0.0/23')]
+
+ Args:
+ addresses: A list of IPv4Network or IPv6Network objects.
+
+ Returns:
+ A list of IPv4Network or IPv6Network objects depending on what we
+ were passed.
+
+ Raises:
+ TypeError: If passed a list of mixed version objects.
+
+ """
+ i = 0
+ addrs = []
+ ips = []
+ nets = []
+
+ # split IP addresses and networks
+ for ip in addresses:
+ if isinstance(ip, _BaseIP):
+ if ips and ips[-1]._version != ip._version:
+ raise TypeError("%s and %s are not of the same version" % (
+ str(ip), str(ips[-1])))
+ ips.append(ip)
+ elif ip._prefixlen == ip._max_prefixlen:
+ if ips and ips[-1]._version != ip._version:
+ raise TypeError("%s and %s are not of the same version" % (
+ str(ip), str(ips[-1])))
+ ips.append(ip.ip)
+ else:
+ if nets and nets[-1]._version != ip._version:
+ raise TypeError("%s and %s are not of the same version" % (
+ str(ip), str(ips[-1])))
+ nets.append(ip)
+
+ # sort and dedup
+ ips = sorted(set(ips))
+ nets = sorted(set(nets))
+
+ while i < len(ips):
+ (first, last) = _find_address_range(ips[i:])
+ i = ips.index(last) + 1
+ addrs.extend(summarize_address_range(first, last))
+
+ return _collapse_address_list_recursive(sorted(
+ addrs + nets, key=_BaseNet._get_networks_key))
+
+# backwards compatibility
+CollapseAddrList = collapse_address_list
+
+# Test whether this Python implementation supports byte objects that
+# are not identical to str ones.
+# We need to exclude platforms where bytes == str so that we can
+# distinguish between packed representations and strings, for example
+# b'12::' (the IPv4 address 49.50.58.58) and '12::' (an IPv6 address).
+try:
+ _compat_has_real_bytes = bytes is not str
+except NameError: # <Python2.6
+ _compat_has_real_bytes = False
+
+def get_mixed_type_key(obj):
+ """Return a key suitable for sorting between networks and addresses.
+
+ Address and Network objects are not sortable by default; they're
+ fundamentally different so the expression
+
+ IPv4Address('1.1.1.1') <= IPv4Network('1.1.1.1/24')
+
+ doesn't make any sense. There are some times however, where you may wish
+ to have ipaddr sort these for you anyway. If you need to do this, you
+ can use this function as the key= argument to sorted().
+
+ Args:
+ obj: either a Network or Address object.
+ Returns:
+ appropriate key.
+
+ """
+ if isinstance(obj, _BaseNet):
+ return obj._get_networks_key()
+ elif isinstance(obj, _BaseIP):
+ return obj._get_address_key()
+ return NotImplemented
+
+class _IPAddrBase(object):
+
+ """The mother class."""
+
+ def __index__(self):
+ return self._ip
+
+ def __int__(self):
+ return self._ip
+
+ def __hex__(self):
+ return hex(self._ip)
+
+ @property
+ def exploded(self):
+ """Return the longhand version of the IP address as a string."""
+ return self._explode_shorthand_ip_string()
+
+ @property
+ def compressed(self):
+ """Return the shorthand version of the IP address as a string."""
+ return str(self)
+
+
+class _BaseIP(_IPAddrBase):
+
+ """A generic IP object.
+
+ This IP class contains the version independent methods which are
+ used by single IP addresses.
+
+ """
+
+ def __init__(self, address):
+ if (not (_compat_has_real_bytes and isinstance(address, bytes))
+ and '/' in str(address)):
+ raise AddressValueError(address)
+
+ def __eq__(self, other):
+ try:
+ return (self._ip == other._ip
+ and self._version == other._version)
+ except AttributeError:
+ return NotImplemented
+
+ def __ne__(self, other):
+ eq = self.__eq__(other)
+ if eq is NotImplemented:
+ return NotImplemented
+ return not eq
+
+ def __le__(self, other):
+ gt = self.__gt__(other)
+ if gt is NotImplemented:
+ return NotImplemented
+ return not gt
+
+ def __ge__(self, other):
+ lt = self.__lt__(other)
+ if lt is NotImplemented:
+ return NotImplemented
+ return not lt
+
+ def __lt__(self, other):
+ if self._version != other._version:
+ raise TypeError('%s and %s are not of the same version' % (
+ str(self), str(other)))
+ if not isinstance(other, _BaseIP):
+ raise TypeError('%s and %s are not of the same type' % (
+ str(self), str(other)))
+ if self._ip != other._ip:
+ return self._ip < other._ip
+ return False
+
+ def __gt__(self, other):
+ if self._version != other._version:
+ raise TypeError('%s and %s are not of the same version' % (
+ str(self), str(other)))
+ if not isinstance(other, _BaseIP):
+ raise TypeError('%s and %s are not of the same type' % (
+ str(self), str(other)))
+ if self._ip != other._ip:
+ return self._ip > other._ip
+ return False
+
+ # Shorthand for Integer addition and subtraction. This is not
+ # meant to ever support addition/subtraction of addresses.
+ def __add__(self, other):
+ if not isinstance(other, int):
+ return NotImplemented
+ return IPAddress(int(self) + other, version=self._version)
+
+ def __sub__(self, other):
+ if not isinstance(other, int):
+ return NotImplemented
+ return IPAddress(int(self) - other, version=self._version)
+
+ def __repr__(self):
+ return '%s(%r)' % (self.__class__.__name__, str(self))
+
+ def __str__(self):
+ return '%s' % self._string_from_ip_int(self._ip)
+
+ def __hash__(self):
+ return hash(hex(long(self._ip)))
+
+ def _get_address_key(self):
+ return (self._version, self)
+
+ @property
+ def version(self):
+ raise NotImplementedError('BaseIP has no version')
+
+
+class _BaseNet(_IPAddrBase):
+
+ """A generic IP object.
+
+ This IP class contains the version independent methods which are
+ used by networks.
+
+ """
+
+ def __init__(self, address):
+ self._cache = {}
+
+ def __repr__(self):
+ return '%s(%r)' % (self.__class__.__name__, str(self))
+
+ def iterhosts(self):
+ """Generate Iterator over usable hosts in a network.
+
+ This is like __iter__ except it doesn't return the network
+ or broadcast addresses.
+
+ """
+ cur = int(self.network) + 1
+ bcast = int(self.broadcast) - 1
+ while cur <= bcast:
+ cur += 1
+ yield IPAddress(cur - 1, version=self._version)
+
+ def __iter__(self):
+ cur = int(self.network)
+ bcast = int(self.broadcast)
+ while cur <= bcast:
+ cur += 1
+ yield IPAddress(cur - 1, version=self._version)
+
+ def __getitem__(self, n):
+ network = int(self.network)
+ broadcast = int(self.broadcast)
+ if n >= 0:
+ if network + n > broadcast:
+ raise IndexError
+ return IPAddress(network + n, version=self._version)
+ else:
+ n += 1
+ if broadcast + n < network:
+ raise IndexError
+ return IPAddress(broadcast + n, version=self._version)
+
+ def __lt__(self, other):
+ if self._version != other._version:
+ raise TypeError('%s and %s are not of the same version' % (
+ str(self), str(other)))
+ if not isinstance(other, _BaseNet):
+ raise TypeError('%s and %s are not of the same type' % (
+ str(self), str(other)))
+ if self.network != other.network:
+ return self.network < other.network
+ if self.netmask != other.netmask:
+ return self.netmask < other.netmask
+ return False
+
+ def __gt__(self, other):
+ if self._version != other._version:
+ raise TypeError('%s and %s are not of the same version' % (
+ str(self), str(other)))
+ if not isinstance(other, _BaseNet):
+ raise TypeError('%s and %s are not of the same type' % (
+ str(self), str(other)))
+ if self.network != other.network:
+ return self.network > other.network
+ if self.netmask != other.netmask:
+ return self.netmask > other.netmask
+ return False
+
+ def __le__(self, other):
+ gt = self.__gt__(other)
+ if gt is NotImplemented:
+ return NotImplemented
+ return not gt
+
+ def __ge__(self, other):
+ lt = self.__lt__(other)
+ if lt is NotImplemented:
+ return NotImplemented
+ return not lt
+
+ def __eq__(self, other):
+ try:
+ return (self._version == other._version
+ and self.network == other.network
+ and int(self.netmask) == int(other.netmask))
+ except AttributeError:
+ if isinstance(other, _BaseIP):
+ return (self._version == other._version
+ and self._ip == other._ip)
+
+ def __ne__(self, other):
+ eq = self.__eq__(other)
+ if eq is NotImplemented:
+ return NotImplemented
+ return not eq
+
+ def __str__(self):
+ return '%s/%s' % (str(self.ip),
+ str(self._prefixlen))
+
+ def __hash__(self):
+ return hash(int(self.network) ^ int(self.netmask))
+
+ def __contains__(self, other):
+ # always false if one is v4 and the other is v6.
+ if self._version != other._version:
+ return False
+ # dealing with another network.
+ if isinstance(other, _BaseNet):
+ return (self.network <= other.network and
+ self.broadcast >= other.broadcast)
+ # dealing with another address
+ else:
+ return (int(self.network) <= int(other._ip) <=
+ int(self.broadcast))
+
+ def overlaps(self, other):
+ """Tell if self is partly contained in other."""
+ return self.network in other or self.broadcast in other or (
+ other.network in self or other.broadcast in self)
+
+ @property
+ def network(self):
+ x = self._cache.get('network')
+ if x is None:
+ x = IPAddress(self._ip & int(self.netmask), version=self._version)
+ self._cache['network'] = x
+ return x
+
+ @property
+ def broadcast(self):
+ x = self._cache.get('broadcast')
+ if x is None:
+ x = IPAddress(self._ip | int(self.hostmask), version=self._version)
+ self._cache['broadcast'] = x
+ return x
+
+ @property
+ def hostmask(self):
+ x = self._cache.get('hostmask')
+ if x is None:
+ x = IPAddress(int(self.netmask) ^ self._ALL_ONES,
+ version=self._version)
+ self._cache['hostmask'] = x
+ return x
+
+ @property
+ def with_prefixlen(self):
+ return '%s/%d' % (str(self.ip), self._prefixlen)
+
+ @property
+ def with_netmask(self):
+ return '%s/%s' % (str(self.ip), str(self.netmask))
+
+ @property
+ def with_hostmask(self):
+ return '%s/%s' % (str(self.ip), str(self.hostmask))
+
+ @property
+ def numhosts(self):
+ """Number of hosts in the current subnet."""
+ return int(self.broadcast) - int(self.network) + 1
+
+ @property
+ def version(self):
+ raise NotImplementedError('BaseNet has no version')
+
+ @property
+ def prefixlen(self):
+ return self._prefixlen
+
+ def address_exclude(self, other):
+ """Remove an address from a larger block.
+
+ For example:
+
+ addr1 = IPNetwork('10.1.1.0/24')
+ addr2 = IPNetwork('10.1.1.0/26')
+ addr1.address_exclude(addr2) =
+ [IPNetwork('10.1.1.64/26'), IPNetwork('10.1.1.128/25')]
+
+ or IPv6:
+
+ addr1 = IPNetwork('::1/32')
+ addr2 = IPNetwork('::1/128')
+ addr1.address_exclude(addr2) = [IPNetwork('::0/128'),
+ IPNetwork('::2/127'),
+ IPNetwork('::4/126'),
+ IPNetwork('::8/125'),
+ ...
+ IPNetwork('0:0:8000::/33')]
+
+ Args:
+ other: An IPvXNetwork object of the same type.
+
+ Returns:
+ A sorted list of IPvXNetwork objects addresses which is self
+ minus other.
+
+ Raises:
+ TypeError: If self and other are of difffering address
+ versions, or if other is not a network object.
+ ValueError: If other is not completely contained by self.
+
+ """
+ if not self._version == other._version:
+ raise TypeError("%s and %s are not of the same version" % (
+ str(self), str(other)))
+
+ if not isinstance(other, _BaseNet):
+ raise TypeError("%s is not a network object" % str(other))
+
+ if other not in self:
+ raise ValueError('%s not contained in %s' % (str(other),
+ str(self)))
+ if other == self:
+ return []
+
+ ret_addrs = []
+
+ # Make sure we're comparing the network of other.
+ other = IPNetwork('%s/%s' % (str(other.network), str(other.prefixlen)),
+ version=other._version)
+
+ s1, s2 = self.subnet()
+ while s1 != other and s2 != other:
+ if other in s1:
+ ret_addrs.append(s2)
+ s1, s2 = s1.subnet()
+ elif other in s2:
+ ret_addrs.append(s1)
+ s1, s2 = s2.subnet()
+ else:
+ # If we got here, there's a bug somewhere.
+ assert True == False, ('Error performing exclusion: '
+ 's1: %s s2: %s other: %s' %
+ (str(s1), str(s2), str(other)))
+ if s1 == other:
+ ret_addrs.append(s2)
+ elif s2 == other:
+ ret_addrs.append(s1)
+ else:
+ # If we got here, there's a bug somewhere.
+ assert True == False, ('Error performing exclusion: '
+ 's1: %s s2: %s other: %s' %
+ (str(s1), str(s2), str(other)))
+
+ return sorted(ret_addrs, key=_BaseNet._get_networks_key)
+
+ def compare_networks(self, other):
+ """Compare two IP objects.
+
+ This is only concerned about the comparison of the integer
+ representation of the network addresses. This means that the
+ host bits aren't considered at all in this method. If you want
+ to compare host bits, you can easily enough do a
+ 'HostA._ip < HostB._ip'
+
+ Args:
+ other: An IP object.
+
+ Returns:
+ If the IP versions of self and other are the same, returns:
+
+ -1 if self < other:
+ eg: IPv4('1.1.1.0/24') < IPv4('1.1.2.0/24')
+ IPv6('1080::200C:417A') < IPv6('1080::200B:417B')
+ 0 if self == other
+ eg: IPv4('1.1.1.1/24') == IPv4('1.1.1.2/24')
+ IPv6('1080::200C:417A/96') == IPv6('1080::200C:417B/96')
+ 1 if self > other
+ eg: IPv4('1.1.1.0/24') > IPv4('1.1.0.0/24')
+ IPv6('1080::1:200C:417A/112') >
+ IPv6('1080::0:200C:417A/112')
+
+ If the IP versions of self and other are different, returns:
+
+ -1 if self._version < other._version
+ eg: IPv4('10.0.0.1/24') < IPv6('::1/128')
+ 1 if self._version > other._version
+ eg: IPv6('::1/128') > IPv4('255.255.255.0/24')
+
+ """
+ if self._version < other._version:
+ return -1
+ if self._version > other._version:
+ return 1
+ # self._version == other._version below here:
+ if self.network < other.network:
+ return -1
+ if self.network > other.network:
+ return 1
+ # self.network == other.network below here:
+ if self.netmask < other.netmask:
+ return -1
+ if self.netmask > other.netmask:
+ return 1
+ # self.network == other.network and self.netmask == other.netmask
+ return 0
+
+ def _get_networks_key(self):
+ """Network-only key function.
+
+ Returns an object that identifies this address' network and
+ netmask. This function is a suitable "key" argument for sorted()
+ and list.sort().
+
+ """
+ return (self._version, self.network, self.netmask)
+
+ def _ip_int_from_prefix(self, prefixlen=None):
+ """Turn the prefix length netmask into a int for comparison.
+
+ Args:
+ prefixlen: An integer, the prefix length.
+
+ Returns:
+ An integer.
+
+ """
+ if not prefixlen and prefixlen != 0:
+ prefixlen = self._prefixlen
+ return self._ALL_ONES ^ (self._ALL_ONES >> prefixlen)
+
+ def _prefix_from_ip_int(self, ip_int, mask=32):
+ """Return prefix length from the decimal netmask.
+
+ Args:
+ ip_int: An integer, the IP address.
+ mask: The netmask. Defaults to 32.
+
+ Returns:
+ An integer, the prefix length.
+
+ """
+ while mask:
+ if ip_int & 1 == 1:
+ break
+ ip_int >>= 1
+ mask -= 1
+
+ return mask
+
+ def _ip_string_from_prefix(self, prefixlen=None):
+ """Turn a prefix length into a dotted decimal string.
+
+ Args:
+ prefixlen: An integer, the netmask prefix length.
+
+ Returns:
+ A string, the dotted decimal netmask string.
+
+ """
+ if not prefixlen:
+ prefixlen = self._prefixlen
+ return self._string_from_ip_int(self._ip_int_from_prefix(prefixlen))
+
+ def iter_subnets(self, prefixlen_diff=1, new_prefix=None):
+ """The subnets which join to make the current subnet.
+
+ In the case that self contains only one IP
+ (self._prefixlen == 32 for IPv4 or self._prefixlen == 128
+ for IPv6), return a list with just ourself.
+
+ Args:
+ prefixlen_diff: An integer, the amount the prefix length
+ should be increased by. This should not be set if
+ new_prefix is also set.
+ new_prefix: The desired new prefix length. This must be a
+ larger number (smaller prefix) than the existing prefix.
+ This should not be set if prefixlen_diff is also set.
+
+ Returns:
+ An iterator of IPv(4|6) objects.
+
+ Raises:
+ ValueError: The prefixlen_diff is too small or too large.
+ OR
+ prefixlen_diff and new_prefix are both set or new_prefix
+ is a smaller number than the current prefix (smaller
+ number means a larger network)
+
+ """
+ if self._prefixlen == self._max_prefixlen:
+ yield self
+ return
+
+ if new_prefix is not None:
+ if new_prefix < self._prefixlen:
+ raise ValueError('new prefix must be longer')
+ if prefixlen_diff != 1:
+ raise ValueError('cannot set prefixlen_diff and new_prefix')
+ prefixlen_diff = new_prefix - self._prefixlen
+
+ if prefixlen_diff < 0:
+ raise ValueError('prefix length diff must be > 0')
+ new_prefixlen = self._prefixlen + prefixlen_diff
+
+ if not self._is_valid_netmask(str(new_prefixlen)):
+ raise ValueError(
+ 'prefix length diff %d is invalid for netblock %s' % (
+ new_prefixlen, str(self)))
+
+ first = IPNetwork('%s/%s' % (str(self.network),
+ str(self._prefixlen + prefixlen_diff)),
+ version=self._version)
+
+ yield first
+ current = first
+ while True:
+ broadcast = current.broadcast
+ if broadcast == self.broadcast:
+ return
+ new_addr = IPAddress(int(broadcast) + 1, version=self._version)
+ current = IPNetwork('%s/%s' % (str(new_addr), str(new_prefixlen)),
+ version=self._version)
+
+ yield current
+
+ def masked(self):
+ """Return the network object with the host bits masked out."""
+ return IPNetwork('%s/%d' % (self.network, self._prefixlen),
+ version=self._version)
+
+ def subnet(self, prefixlen_diff=1, new_prefix=None):
+ """Return a list of subnets, rather than an iterator."""
+ return list(self.iter_subnets(prefixlen_diff, new_prefix))
+
+ def supernet(self, prefixlen_diff=1, new_prefix=None):
+ """The supernet containing the current network.
+
+ Args:
+ prefixlen_diff: An integer, the amount the prefix length of
+ the network should be decreased by. For example, given a
+ /24 network and a prefixlen_diff of 3, a supernet with a
+ /21 netmask is returned.
+
+ Returns:
+ An IPv4 network object.
+
+ Raises:
+ ValueError: If self.prefixlen - prefixlen_diff < 0. I.e., you have a
+ negative prefix length.
+ OR
+ If prefixlen_diff and new_prefix are both set or new_prefix is a
+ larger number than the current prefix (larger number means a
+ smaller network)
+
+ """
+ if self._prefixlen == 0:
+ return self
+
+ if new_prefix is not None:
+ if new_prefix > self._prefixlen:
+ raise ValueError('new prefix must be shorter')
+ if prefixlen_diff != 1:
+ raise ValueError('cannot set prefixlen_diff and new_prefix')
+ prefixlen_diff = self._prefixlen - new_prefix
+
+
+ if self.prefixlen - prefixlen_diff < 0:
+ raise ValueError(
+ 'current prefixlen is %d, cannot have a prefixlen_diff of %d' %
+ (self.prefixlen, prefixlen_diff))
+ return IPNetwork('%s/%s' % (str(self.network),
+ str(self.prefixlen - prefixlen_diff)),
+ version=self._version)
+
+ # backwards compatibility
+ Subnet = subnet
+ Supernet = supernet
+ AddressExclude = address_exclude
+ CompareNetworks = compare_networks
+ Contains = __contains__
+
+
+class _BaseV4(object):
+
+ """Base IPv4 object.
+
+ The following methods are used by IPv4 objects in both single IP
+ addresses and networks.
+
+ """
+
+ # Equivalent to 255.255.255.255 or 32 bits of 1's.
+ _ALL_ONES = (2**IPV4LENGTH) - 1
+ _DECIMAL_DIGITS = frozenset('0123456789')
+
+ def __init__(self, address):
+ self._version = 4
+ self._max_prefixlen = IPV4LENGTH
+
+ def _explode_shorthand_ip_string(self, ip_str=None):
+ if not ip_str:
+ ip_str = str(self)
+ return ip_str
+
+ def _ip_int_from_string(self, ip_str):
+ """Turn the given IP string into an integer for comparison.
+
+ Args:
+ ip_str: A string, the IP ip_str.
+
+ Returns:
+ The IP ip_str as an integer.
+
+ Raises:
+ AddressValueError: if ip_str isn't a valid IPv4 Address.
+
+ """
+ octets = ip_str.split('.')
+ if len(octets) != 4:
+ raise AddressValueError(ip_str)
+
+ packed_ip = 0
+ for oc in octets:
+ try:
+ packed_ip = (packed_ip << 8) | self._parse_octet(oc)
+ except ValueError:
+ raise AddressValueError(ip_str)
+ return packed_ip
+
+ def _parse_octet(self, octet_str):
+ """Convert a decimal octet into an integer.
+
+ Args:
+ octet_str: A string, the number to parse.
+
+ Returns:
+ The octet as an integer.
+
+ Raises:
+ ValueError: if the octet isn't strictly a decimal from [0..255].
+
+ """
+ # Whitelist the characters, since int() allows a lot of bizarre stuff.
+ if not self._DECIMAL_DIGITS.issuperset(octet_str):
+ raise ValueError
+ octet_int = int(octet_str, 10)
+ # Disallow leading zeroes, because no clear standard exists on
+ # whether these should be interpreted as decimal or octal.
+ if octet_int > 255 or (octet_str[0] == '0' and len(octet_str) > 1):
+ raise ValueError
+ return octet_int
+
+ def _string_from_ip_int(self, ip_int):
+ """Turns a 32-bit integer into dotted decimal notation.
+
+ Args:
+ ip_int: An integer, the IP address.
+
+ Returns:
+ The IP address as a string in dotted decimal notation.
+
+ """
+ octets = []
+ for _ in xrange(4):
+ octets.insert(0, str(ip_int & 0xFF))
+ ip_int >>= 8
+ return '.'.join(octets)
+
+ @property
+ def max_prefixlen(self):
+ return self._max_prefixlen
+
+ @property
+ def packed(self):
+ """The binary representation of this address."""
+ return v4_int_to_packed(self._ip)
+
+ @property
+ def version(self):
+ return self._version
+
+ @property
+ def is_reserved(self):
+ """Test if the address is otherwise IETF reserved.
+
+ Returns:
+ A boolean, True if the address is within the
+ reserved IPv4 Network range.
+
+ """
+ return self in IPv4Network('240.0.0.0/4')
+
+ @property
+ def is_private(self):
+ """Test if this address is allocated for private networks.
+
+ Returns:
+ A boolean, True if the address is reserved per RFC 1918.
+
+ """
+ return (self in IPv4Network('10.0.0.0/8') or
+ self in IPv4Network('172.16.0.0/12') or
+ self in IPv4Network('192.168.0.0/16'))
+
+ @property
+ def is_multicast(self):
+ """Test if the address is reserved for multicast use.
+
+ Returns:
+ A boolean, True if the address is multicast.
+ See RFC 3171 for details.
+
+ """
+ return self in IPv4Network('224.0.0.0/4')
+
+ @property
+ def is_unspecified(self):
+ """Test if the address is unspecified.
+
+ Returns:
+ A boolean, True if this is the unspecified address as defined in
+ RFC 5735 3.
+
+ """
+ return self in IPv4Network('0.0.0.0')
+
+ @property
+ def is_loopback(self):
+ """Test if the address is a loopback address.
+
+ Returns:
+ A boolean, True if the address is a loopback per RFC 3330.
+
+ """
+ return self in IPv4Network('127.0.0.0/8')
+
+ @property
+ def is_link_local(self):
+ """Test if the address is reserved for link-local.
+
+ Returns:
+ A boolean, True if the address is link-local per RFC 3927.
+
+ """
+ return self in IPv4Network('169.254.0.0/16')
+
+
+class IPv4Address(_BaseV4, _BaseIP):
+
+ """Represent and manipulate single IPv4 Addresses."""
+
+ def __init__(self, address):
+
+ """
+ Args:
+ address: A string or integer representing the IP
+ '192.168.1.1'
+
+ Additionally, an integer can be passed, so
+ IPv4Address('192.168.1.1') == IPv4Address(3232235777).
+ or, more generally
+ IPv4Address(int(IPv4Address('192.168.1.1'))) ==
+ IPv4Address('192.168.1.1')
+
+ Raises:
+ AddressValueError: If ipaddr isn't a valid IPv4 address.
+
+ """
+ _BaseIP.__init__(self, address)
+ _BaseV4.__init__(self, address)
+
+ # Efficient constructor from integer.
+ if isinstance(address, (int, long)):
+ self._ip = address
+ if address < 0 or address > self._ALL_ONES:
+ raise AddressValueError(address)
+ return
+
+ # Constructing from a packed address
+ if _compat_has_real_bytes:
+ if isinstance(address, bytes) and len(address) == 4:
+ self._ip = struct.unpack('!I', address)[0]
+ return
+
+ # Assume input argument to be string or any object representation
+ # which converts into a formatted IP string.
+ addr_str = str(address)
+ self._ip = self._ip_int_from_string(addr_str)
+
+
+class IPv4Network(_BaseV4, _BaseNet):
+
+ """This class represents and manipulates 32-bit IPv4 networks.
+
+ Attributes: [examples for IPv4Network('1.2.3.4/27')]
+ ._ip: 16909060
+ .ip: IPv4Address('1.2.3.4')
+ .network: IPv4Address('1.2.3.0')
+ .hostmask: IPv4Address('0.0.0.31')
+ .broadcast: IPv4Address('1.2.3.31')
+ .netmask: IPv4Address('255.255.255.224')
+ .prefixlen: 27
+
+ """
+
+ # the valid octets for host and netmasks. only useful for IPv4.
+ _valid_mask_octets = set((255, 254, 252, 248, 240, 224, 192, 128, 0))
+
+ def __init__(self, address, strict=False):
+ """Instantiate a new IPv4 network object.
+
+ Args:
+ address: A string or integer representing the IP [& network].
+ '192.168.1.1/24'
+ '192.168.1.1/255.255.255.0'
+ '192.168.1.1/0.0.0.255'
+ are all functionally the same in IPv4. Similarly,
+ '192.168.1.1'
+ '192.168.1.1/255.255.255.255'
+ '192.168.1.1/32'
+ are also functionaly equivalent. That is to say, failing to
+ provide a subnetmask will create an object with a mask of /32.
+
+ If the mask (portion after the / in the argument) is given in
+ dotted quad form, it is treated as a netmask if it starts with a
+ non-zero field (e.g. /255.0.0.0 == /8) and as a hostmask if it
+ starts with a zero field (e.g. 0.255.255.255 == /8), with the
+ single exception of an all-zero mask which is treated as a
+ netmask == /0. If no mask is given, a default of /32 is used.
+
+ Additionally, an integer can be passed, so
+ IPv4Network('192.168.1.1') == IPv4Network(3232235777).
+ or, more generally
+ IPv4Network(int(IPv4Network('192.168.1.1'))) ==
+ IPv4Network('192.168.1.1')
+
+ strict: A boolean. If true, ensure that we have been passed
+ A true network address, eg, 192.168.1.0/24 and not an
+ IP address on a network, eg, 192.168.1.1/24.
+
+ Raises:
+ AddressValueError: If ipaddr isn't a valid IPv4 address.
+ NetmaskValueError: If the netmask isn't valid for
+ an IPv4 address.
+ ValueError: If strict was True and a network address was not
+ supplied.
+
+ """
+ _BaseNet.__init__(self, address)
+ _BaseV4.__init__(self, address)
+
+ # Efficient constructor from integer.
+ if isinstance(address, (int, long)):
+ self._ip = address
+ self.ip = IPv4Address(self._ip)
+ self._prefixlen = self._max_prefixlen
+ self.netmask = IPv4Address(self._ALL_ONES)
+ if address < 0 or address > self._ALL_ONES:
+ raise AddressValueError(address)
+ return
+
+ # Constructing from a packed address
+ if _compat_has_real_bytes:
+ if isinstance(address, bytes) and len(address) == 4:
+ self._ip = struct.unpack('!I', address)[0]
+ self.ip = IPv4Address(self._ip)
+ self._prefixlen = self._max_prefixlen
+ self.netmask = IPv4Address(self._ALL_ONES)
+ return
+
+ # Assume input argument to be string or any object representation
+ # which converts into a formatted IP prefix string.
+ addr = str(address).split('/')
+
+ if len(addr) > 2:
+ raise AddressValueError(address)
+
+ self._ip = self._ip_int_from_string(addr[0])
+ self.ip = IPv4Address(self._ip)
+
+ if len(addr) == 2:
+ mask = addr[1].split('.')
+ if len(mask) == 4:
+ # We have dotted decimal netmask.
+ if self._is_valid_netmask(addr[1]):
+ self.netmask = IPv4Address(self._ip_int_from_string(
+ addr[1]))
+ elif self._is_hostmask(addr[1]):
+ self.netmask = IPv4Address(
+ self._ip_int_from_string(addr[1]) ^ self._ALL_ONES)
+ else:
+ raise NetmaskValueError('%s is not a valid netmask'
+ % addr[1])
+
+ self._prefixlen = self._prefix_from_ip_int(int(self.netmask))
+ else:
+ # We have a netmask in prefix length form.
+ if not self._is_valid_netmask(addr[1]):
+ raise NetmaskValueError(addr[1])
+ self._prefixlen = int(addr[1])
+ self.netmask = IPv4Address(self._ip_int_from_prefix(
+ self._prefixlen))
+ else:
+ self._prefixlen = self._max_prefixlen
+ self.netmask = IPv4Address(self._ip_int_from_prefix(
+ self._prefixlen))
+ if strict:
+ if self.ip != self.network:
+ raise ValueError('%s has host bits set' %
+ self.ip)
+
+ def _is_hostmask(self, ip_str):
+ """Test if the IP string is a hostmask (rather than a netmask).
+
+ Args:
+ ip_str: A string, the potential hostmask.
+
+ Returns:
+ A boolean, True if the IP string is a hostmask.
+
+ """
+ bits = ip_str.split('.')
+ try:
+ parts = [int(x) for x in bits if int(x) in self._valid_mask_octets]
+ except ValueError:
+ return False
+ if len(parts) != len(bits):
+ return False
+ if parts[0] < parts[-1]:
+ return True
+ return False
+
+ def _is_valid_netmask(self, netmask):
+ """Verify that the netmask is valid.
+
+ Args:
+ netmask: A string, either a prefix or dotted decimal
+ netmask.
+
+ Returns:
+ A boolean, True if the prefix represents a valid IPv4
+ netmask.
+
+ """
+ mask = netmask.split('.')
+ if len(mask) == 4:
+ if [x for x in mask if int(x) not in self._valid_mask_octets]:
+ return False
+ if [y for idx, y in enumerate(mask) if idx > 0 and
+ y > mask[idx - 1]]:
+ return False
+ return True
+ try:
+ netmask = int(netmask)
+ except ValueError:
+ return False
+ return 0 <= netmask <= self._max_prefixlen
+
+ # backwards compatibility
+ IsRFC1918 = lambda self: self.is_private
+ IsMulticast = lambda self: self.is_multicast
+ IsLoopback = lambda self: self.is_loopback
+ IsLinkLocal = lambda self: self.is_link_local
+
+
+class _BaseV6(object):
+
+ """Base IPv6 object.
+
+ The following methods are used by IPv6 objects in both single IP
+ addresses and networks.
+
+ """
+
+ _ALL_ONES = (2**IPV6LENGTH) - 1
+ _HEXTET_COUNT = 8
+ _HEX_DIGITS = frozenset('0123456789ABCDEFabcdef')
+
+ def __init__(self, address):
+ self._version = 6
+ self._max_prefixlen = IPV6LENGTH
+
+ def _ip_int_from_string(self, ip_str):
+ """Turn an IPv6 ip_str into an integer.
+
+ Args:
+ ip_str: A string, the IPv6 ip_str.
+
+ Returns:
+ A long, the IPv6 ip_str.
+
+ Raises:
+ AddressValueError: if ip_str isn't a valid IPv6 Address.
+
+ """
+ parts = ip_str.split(':')
+
+ # An IPv6 address needs at least 2 colons (3 parts).
+ if len(parts) < 3:
+ raise AddressValueError(ip_str)
+
+ # If the address has an IPv4-style suffix, convert it to hexadecimal.
+ if '.' in parts[-1]:
+ ipv4_int = IPv4Address(parts.pop())._ip
+ parts.append('%x' % ((ipv4_int >> 16) & 0xFFFF))
+ parts.append('%x' % (ipv4_int & 0xFFFF))
+
+ # An IPv6 address can't have more than 8 colons (9 parts).
+ if len(parts) > self._HEXTET_COUNT + 1:
+ raise AddressValueError(ip_str)
+
+ # Disregarding the endpoints, find '::' with nothing in between.
+ # This indicates that a run of zeroes has been skipped.
+ try:
+ skip_index, = (
+ [i for i in xrange(1, len(parts) - 1) if not parts[i]] or
+ [None])
+ except ValueError:
+ # Can't have more than one '::'
+ raise AddressValueError(ip_str)
+
+ # parts_hi is the number of parts to copy from above/before the '::'
+ # parts_lo is the number of parts to copy from below/after the '::'
+ if skip_index is not None:
+ # If we found a '::', then check if it also covers the endpoints.
+ parts_hi = skip_index
+ parts_lo = len(parts) - skip_index - 1
+ if not parts[0]:
+ parts_hi -= 1
+ if parts_hi:
+ raise AddressValueError(ip_str) # ^: requires ^::
+ if not parts[-1]:
+ parts_lo -= 1
+ if parts_lo:
+ raise AddressValueError(ip_str) # :$ requires ::$
+ parts_skipped = self._HEXTET_COUNT - (parts_hi + parts_lo)
+ if parts_skipped < 1:
+ raise AddressValueError(ip_str)
+ else:
+ # Otherwise, allocate the entire address to parts_hi. The endpoints
+ # could still be empty, but _parse_hextet() will check for that.
+ if len(parts) != self._HEXTET_COUNT:
+ raise AddressValueError(ip_str)
+ parts_hi = len(parts)
+ parts_lo = 0
+ parts_skipped = 0
+
+ try:
+ # Now, parse the hextets into a 128-bit integer.
+ ip_int = 0L
+ for i in xrange(parts_hi):
+ ip_int <<= 16
+ ip_int |= self._parse_hextet(parts[i])
+ ip_int <<= 16 * parts_skipped
+ for i in xrange(-parts_lo, 0):
+ ip_int <<= 16
+ ip_int |= self._parse_hextet(parts[i])
+ return ip_int
+ except ValueError:
+ raise AddressValueError(ip_str)
+
+ def _parse_hextet(self, hextet_str):
+ """Convert an IPv6 hextet string into an integer.
+
+ Args:
+ hextet_str: A string, the number to parse.
+
+ Returns:
+ The hextet as an integer.
+
+ Raises:
+ ValueError: if the input isn't strictly a hex number from [0..FFFF].
+
+ """
+ # Whitelist the characters, since int() allows a lot of bizarre stuff.
+ if not self._HEX_DIGITS.issuperset(hextet_str):
+ raise ValueError
+ hextet_int = int(hextet_str, 16)
+ if hextet_int > 0xFFFF:
+ raise ValueError
+ return hextet_int
+
+ def _compress_hextets(self, hextets):
+ """Compresses a list of hextets.
+
+ Compresses a list of strings, replacing the longest continuous
+ sequence of "0" in the list with "" and adding empty strings at
+ the beginning or at the end of the string such that subsequently
+ calling ":".join(hextets) will produce the compressed version of
+ the IPv6 address.
+
+ Args:
+ hextets: A list of strings, the hextets to compress.
+
+ Returns:
+ A list of strings.
+
+ """
+ best_doublecolon_start = -1
+ best_doublecolon_len = 0
+ doublecolon_start = -1
+ doublecolon_len = 0
+ for index in range(len(hextets)):
+ if hextets[index] == '0':
+ doublecolon_len += 1
+ if doublecolon_start == -1:
+ # Start of a sequence of zeros.
+ doublecolon_start = index
+ if doublecolon_len > best_doublecolon_len:
+ # This is the longest sequence of zeros so far.
+ best_doublecolon_len = doublecolon_len
+ best_doublecolon_start = doublecolon_start
+ else:
+ doublecolon_len = 0
+ doublecolon_start = -1
+
+ if best_doublecolon_len > 1:
+ best_doublecolon_end = (best_doublecolon_start +
+ best_doublecolon_len)
+ # For zeros at the end of the address.
+ if best_doublecolon_end == len(hextets):
+ hextets += ['']
+ hextets[best_doublecolon_start:best_doublecolon_end] = ['']
+ # For zeros at the beginning of the address.
+ if best_doublecolon_start == 0:
+ hextets = [''] + hextets
+
+ return hextets
+
+ def _string_from_ip_int(self, ip_int=None):
+ """Turns a 128-bit integer into hexadecimal notation.
+
+ Args:
+ ip_int: An integer, the IP address.
+
+ Returns:
+ A string, the hexadecimal representation of the address.
+
+ Raises:
+ ValueError: The address is bigger than 128 bits of all ones.
+
+ """
+ if not ip_int and ip_int != 0:
+ ip_int = int(self._ip)
+
+ if ip_int > self._ALL_ONES:
+ raise ValueError('IPv6 address is too large')
+
+ hex_str = '%032x' % ip_int
+ hextets = []
+ for x in range(0, 32, 4):
+ hextets.append('%x' % int(hex_str[x:x+4], 16))
+
+ hextets = self._compress_hextets(hextets)
+ return ':'.join(hextets)
+
+ def _explode_shorthand_ip_string(self, ip_str=None):
+ """Expand a shortened IPv6 address.
+
+ Args:
+ ip_str: A string, the IPv6 address.
+
+ Returns:
+ A string, the expanded IPv6 address.
+
+ """
+ if not ip_str:
+ ip_str = str(self)
+ if isinstance(self, _BaseNet):
+ ip_str = str(self.ip)
+
+ ip_int = self._ip_int_from_string(ip_str)
+ parts = []
+ for i in xrange(self._HEXTET_COUNT):
+ parts.append('%04x' % (ip_int & 0xFFFF))
+ ip_int >>= 16
+ parts.reverse()
+ return ':'.join(parts)
+
+ @property
+ def max_prefixlen(self):
+ return self._max_prefixlen
+
+ @property
+ def packed(self):
+ """The binary representation of this address."""
+ return v6_int_to_packed(self._ip)
+
+ @property
+ def version(self):
+ return self._version
+
+ @property
+ def is_multicast(self):
+ """Test if the address is reserved for multicast use.
+
+ Returns:
+ A boolean, True if the address is a multicast address.
+ See RFC 2373 2.7 for details.
+
+ """
+ return self in IPv6Network('ff00::/8')
+
+ @property
+ def is_reserved(self):
+ """Test if the address is otherwise IETF reserved.
+
+ Returns:
+ A boolean, True if the address is within one of the
+ reserved IPv6 Network ranges.
+
+ """
+ return (self in IPv6Network('::/8') or
+ self in IPv6Network('100::/8') or
+ self in IPv6Network('200::/7') or
+ self in IPv6Network('400::/6') or
+ self in IPv6Network('800::/5') or
+ self in IPv6Network('1000::/4') or
+ self in IPv6Network('4000::/3') or
+ self in IPv6Network('6000::/3') or
+ self in IPv6Network('8000::/3') or
+ self in IPv6Network('A000::/3') or
+ self in IPv6Network('C000::/3') or
+ self in IPv6Network('E000::/4') or
+ self in IPv6Network('F000::/5') or
+ self in IPv6Network('F800::/6') or
+ self in IPv6Network('FE00::/9'))
+
+ @property
+ def is_unspecified(self):
+ """Test if the address is unspecified.
+
+ Returns:
+ A boolean, True if this is the unspecified address as defined in
+ RFC 2373 2.5.2.
+
+ """
+ return self._ip == 0 and getattr(self, '_prefixlen', 128) == 128
+
+ @property
+ def is_loopback(self):
+ """Test if the address is a loopback address.
+
+ Returns:
+ A boolean, True if the address is a loopback address as defined in
+ RFC 2373 2.5.3.
+
+ """
+ return self._ip == 1 and getattr(self, '_prefixlen', 128) == 128
+
+ @property
+ def is_link_local(self):
+ """Test if the address is reserved for link-local.
+
+ Returns:
+ A boolean, True if the address is reserved per RFC 4291.
+
+ """
+ return self in IPv6Network('fe80::/10')
+
+ @property
+ def is_site_local(self):
+ """Test if the address is reserved for site-local.
+
+ Note that the site-local address space has been deprecated by RFC 3879.
+ Use is_private to test if this address is in the space of unique local
+ addresses as defined by RFC 4193.
+
+ Returns:
+ A boolean, True if the address is reserved per RFC 3513 2.5.6.
+
+ """
+ return self in IPv6Network('fec0::/10')
+
+ @property
+ def is_private(self):
+ """Test if this address is allocated for private networks.
+
+ Returns:
+ A boolean, True if the address is reserved per RFC 4193.
+
+ """
+ return self in IPv6Network('fc00::/7')
+
+ @property
+ def ipv4_mapped(self):
+ """Return the IPv4 mapped address.
+
+ Returns:
+ If the IPv6 address is a v4 mapped address, return the
+ IPv4 mapped address. Return None otherwise.
+
+ """
+ if (self._ip >> 32) != 0xFFFF:
+ return None
+ return IPv4Address(self._ip & 0xFFFFFFFF)
+
+ @property
+ def teredo(self):
+ """Tuple of embedded teredo IPs.
+
+ Returns:
+ Tuple of the (server, client) IPs or None if the address
+ doesn't appear to be a teredo address (doesn't start with
+ 2001::/32)
+
+ """
+ if (self._ip >> 96) != 0x20010000:
+ return None
+ return (IPv4Address((self._ip >> 64) & 0xFFFFFFFF),
+ IPv4Address(~self._ip & 0xFFFFFFFF))
+
+ @property
+ def sixtofour(self):
+ """Return the IPv4 6to4 embedded address.
+
+ Returns:
+ The IPv4 6to4-embedded address if present or None if the
+ address doesn't appear to contain a 6to4 embedded address.
+
+ """
+ if (self._ip >> 112) != 0x2002:
+ return None
+ return IPv4Address((self._ip >> 80) & 0xFFFFFFFF)
+
+
+class IPv6Address(_BaseV6, _BaseIP):
+
+ """Represent and manipulate single IPv6 Addresses.
+ """
+
+ def __init__(self, address):
+ """Instantiate a new IPv6 address object.
+
+ Args:
+ address: A string or integer representing the IP
+
+ Additionally, an integer can be passed, so
+ IPv6Address('2001:4860::') ==
+ IPv6Address(42541956101370907050197289607612071936L).
+ or, more generally
+ IPv6Address(IPv6Address('2001:4860::')._ip) ==
+ IPv6Address('2001:4860::')
+
+ Raises:
+ AddressValueError: If address isn't a valid IPv6 address.
+
+ """
+ _BaseIP.__init__(self, address)
+ _BaseV6.__init__(self, address)
+
+ # Efficient constructor from integer.
+ if isinstance(address, (int, long)):
+ self._ip = address
+ if address < 0 or address > self._ALL_ONES:
+ raise AddressValueError(address)
+ return
+
+ # Constructing from a packed address
+ if _compat_has_real_bytes:
+ if isinstance(address, bytes) and len(address) == 16:
+ tmp = struct.unpack('!QQ', address)
+ self._ip = (tmp[0] << 64) | tmp[1]
+ return
+
+ # Assume input argument to be string or any object representation
+ # which converts into a formatted IP string.
+ addr_str = str(address)
+ if not addr_str:
+ raise AddressValueError('')
+
+ self._ip = self._ip_int_from_string(addr_str)
+
+
+class IPv6Network(_BaseV6, _BaseNet):
+
+ """This class represents and manipulates 128-bit IPv6 networks.
+
+ Attributes: [examples for IPv6('2001:658:22A:CAFE:200::1/64')]
+ .ip: IPv6Address('2001:658:22a:cafe:200::1')
+ .network: IPv6Address('2001:658:22a:cafe::')
+ .hostmask: IPv6Address('::ffff:ffff:ffff:ffff')
+ .broadcast: IPv6Address('2001:658:22a:cafe:ffff:ffff:ffff:ffff')
+ .netmask: IPv6Address('ffff:ffff:ffff:ffff::')
+ .prefixlen: 64
+
+ """
+
+
+ def __init__(self, address, strict=False):
+ """Instantiate a new IPv6 Network object.
+
+ Args:
+ address: A string or integer representing the IPv6 network or the IP
+ and prefix/netmask.
+ '2001:4860::/128'
+ '2001:4860:0000:0000:0000:0000:0000:0000/128'
+ '2001:4860::'
+ are all functionally the same in IPv6. That is to say,
+ failing to provide a subnetmask will create an object with
+ a mask of /128.
+
+ Additionally, an integer can be passed, so
+ IPv6Network('2001:4860::') ==
+ IPv6Network(42541956101370907050197289607612071936L).
+ or, more generally
+ IPv6Network(IPv6Network('2001:4860::')._ip) ==
+ IPv6Network('2001:4860::')
+
+ strict: A boolean. If true, ensure that we have been passed
+ A true network address, eg, 192.168.1.0/24 and not an
+ IP address on a network, eg, 192.168.1.1/24.
+
+ Raises:
+ AddressValueError: If address isn't a valid IPv6 address.
+ NetmaskValueError: If the netmask isn't valid for
+ an IPv6 address.
+ ValueError: If strict was True and a network address was not
+ supplied.
+
+ """
+ _BaseNet.__init__(self, address)
+ _BaseV6.__init__(self, address)
+
+ # Efficient constructor from integer.
+ if isinstance(address, (int, long)):
+ self._ip = address
+ self.ip = IPv6Address(self._ip)
+ self._prefixlen = self._max_prefixlen
+ self.netmask = IPv6Address(self._ALL_ONES)
+ if address < 0 or address > self._ALL_ONES:
+ raise AddressValueError(address)
+ return
+
+ # Constructing from a packed address
+ if _compat_has_real_bytes:
+ if isinstance(address, bytes) and len(address) == 16:
+ tmp = struct.unpack('!QQ', address)
+ self._ip = (tmp[0] << 64) | tmp[1]
+ self.ip = IPv6Address(self._ip)
+ self._prefixlen = self._max_prefixlen
+ self.netmask = IPv6Address(self._ALL_ONES)
+ return
+
+ # Assume input argument to be string or any object representation
+ # which converts into a formatted IP prefix string.
+ addr = str(address).split('/')
+
+ if len(addr) > 2:
+ raise AddressValueError(address)
+
+ self._ip = self._ip_int_from_string(addr[0])
+ self.ip = IPv6Address(self._ip)
+
+ if len(addr) == 2:
+ if self._is_valid_netmask(addr[1]):
+ self._prefixlen = int(addr[1])
+ else:
+ raise NetmaskValueError(addr[1])
+ else:
+ self._prefixlen = self._max_prefixlen
+
+ self.netmask = IPv6Address(self._ip_int_from_prefix(self._prefixlen))
+
+ if strict:
+ if self.ip != self.network:
+ raise ValueError('%s has host bits set' %
+ self.ip)
+
+ def _is_valid_netmask(self, prefixlen):
+ """Verify that the netmask/prefixlen is valid.
+
+ Args:
+ prefixlen: A string, the netmask in prefix length format.
+
+ Returns:
+ A boolean, True if the prefix represents a valid IPv6
+ netmask.
+
+ """
+ try:
+ prefixlen = int(prefixlen)
+ except ValueError:
+ return False
+ return 0 <= prefixlen <= self._max_prefixlen
+
+ @property
+ def with_netmask(self):
+ return self.with_prefixlen
diff --git a/contrib/ipaddr-py/ipaddr_test.py b/contrib/ipaddr-py/ipaddr_test.py
new file mode 100755
index 000000000..09bece0e7
--- /dev/null
+++ b/contrib/ipaddr-py/ipaddr_test.py
@@ -0,0 +1,1099 @@
+#!/usr/bin/python
+#
+# Copyright 2007 Google Inc.
+# Licensed to PSF under a Contributor Agreement.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""Unittest for ipaddr module."""
+
+
+import unittest
+import time
+import ipaddr
+
+# Compatibility function to cast str to bytes objects
+if ipaddr._compat_has_real_bytes:
+ _cb = lambda bytestr: bytes(bytestr, 'charmap')
+else:
+ _cb = str
+
+class IpaddrUnitTest(unittest.TestCase):
+
+ def setUp(self):
+ self.ipv4 = ipaddr.IPv4Network('1.2.3.4/24')
+ self.ipv4_hostmask = ipaddr.IPv4Network('10.0.0.1/0.255.255.255')
+ self.ipv6 = ipaddr.IPv6Network('2001:658:22a:cafe:200:0:0:1/64')
+
+ def tearDown(self):
+ del(self.ipv4)
+ del(self.ipv4_hostmask)
+ del(self.ipv6)
+ del(self)
+
+ def testRepr(self):
+ self.assertEqual("IPv4Network('1.2.3.4/32')",
+ repr(ipaddr.IPv4Network('1.2.3.4')))
+ self.assertEqual("IPv6Network('::1/128')",
+ repr(ipaddr.IPv6Network('::1')))
+
+ def testAutoMasking(self):
+ addr1 = ipaddr.IPv4Network('1.1.1.255/24')
+ addr1_masked = ipaddr.IPv4Network('1.1.1.0/24')
+ self.assertEqual(addr1_masked, addr1.masked())
+
+ addr2 = ipaddr.IPv6Network('2000:cafe::efac:100/96')
+ addr2_masked = ipaddr.IPv6Network('2000:cafe::/96')
+ self.assertEqual(addr2_masked, addr2.masked())
+
+ # issue57
+ def testAddressIntMath(self):
+ self.assertEqual(ipaddr.IPv4Address('1.1.1.1') + 255,
+ ipaddr.IPv4Address('1.1.2.0'))
+ self.assertEqual(ipaddr.IPv4Address('1.1.1.1') - 256,
+ ipaddr.IPv4Address('1.1.0.1'))
+ self.assertEqual(ipaddr.IPv6Address('::1') + (2**16 - 2),
+ ipaddr.IPv6Address('::ffff'))
+ self.assertEqual(ipaddr.IPv6Address('::ffff') - (2**16 - 2),
+ ipaddr.IPv6Address('::1'))
+
+ def testInvalidStrings(self):
+ def AssertInvalidIP(ip_str):
+ self.assertRaises(ValueError, ipaddr.IPAddress, ip_str)
+ AssertInvalidIP("")
+ AssertInvalidIP("016.016.016.016")
+ AssertInvalidIP("016.016.016")
+ AssertInvalidIP("016.016")
+ AssertInvalidIP("016")
+ AssertInvalidIP("000.000.000.000")
+ AssertInvalidIP("000")
+ AssertInvalidIP("0x0a.0x0a.0x0a.0x0a")
+ AssertInvalidIP("0x0a.0x0a.0x0a")
+ AssertInvalidIP("0x0a.0x0a")
+ AssertInvalidIP("0x0a")
+ AssertInvalidIP("42.42.42.42.42")
+ AssertInvalidIP("42.42.42")
+ AssertInvalidIP("42.42")
+ AssertInvalidIP("42")
+ AssertInvalidIP("42..42.42")
+ AssertInvalidIP("42..42.42.42")
+ AssertInvalidIP("42.42.42.42.")
+ AssertInvalidIP("42.42.42.42...")
+ AssertInvalidIP(".42.42.42.42")
+ AssertInvalidIP("...42.42.42.42")
+ AssertInvalidIP("42.42.42.-0")
+ AssertInvalidIP("42.42.42.+0")
+ AssertInvalidIP(".")
+ AssertInvalidIP("...")
+ AssertInvalidIP("bogus")
+ AssertInvalidIP("bogus.com")
+ AssertInvalidIP("192.168.0.1.com")
+ AssertInvalidIP("12345.67899.-54321.-98765")
+ AssertInvalidIP("257.0.0.0")
+ AssertInvalidIP("42.42.42.-42")
+ AssertInvalidIP("3ffe::1.net")
+ AssertInvalidIP("3ffe::1::1")
+ AssertInvalidIP("1::2::3::4:5")
+ AssertInvalidIP("::7:6:5:4:3:2:")
+ AssertInvalidIP(":6:5:4:3:2:1::")
+ AssertInvalidIP("2001::db:::1")
+ AssertInvalidIP("FEDC:9878")
+ AssertInvalidIP("+1.+2.+3.4")
+ AssertInvalidIP("1.2.3.4e0")
+ AssertInvalidIP("::7:6:5:4:3:2:1:0")
+ AssertInvalidIP("7:6:5:4:3:2:1:0::")
+ AssertInvalidIP("9:8:7:6:5:4:3::2:1")
+ AssertInvalidIP("0:1:2:3::4:5:6:7")
+ AssertInvalidIP("3ffe:0:0:0:0:0:0:0:1")
+ AssertInvalidIP("3ffe::10000")
+ AssertInvalidIP("3ffe::goog")
+ AssertInvalidIP("3ffe::-0")
+ AssertInvalidIP("3ffe::+0")
+ AssertInvalidIP("3ffe::-1")
+ AssertInvalidIP(":")
+ AssertInvalidIP(":::")
+ AssertInvalidIP("::1.2.3")
+ AssertInvalidIP("::1.2.3.4.5")
+ AssertInvalidIP("::1.2.3.4:")
+ AssertInvalidIP("1.2.3.4::")
+ AssertInvalidIP("2001:db8::1:")
+ AssertInvalidIP(":2001:db8::1")
+ AssertInvalidIP(":1:2:3:4:5:6:7")
+ AssertInvalidIP("1:2:3:4:5:6:7:")
+ AssertInvalidIP(":1:2:3:4:5:6:")
+
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv4Network, '')
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv4Network,
+ 'google.com')
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv4Network,
+ '::1.2.3.4')
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network, '')
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
+ 'google.com')
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
+ '1.2.3.4')
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
+ 'cafe:cafe::/128/190')
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
+ '1234:axy::b')
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Address,
+ '1234:axy::b')
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Address,
+ '2001:db8:::1')
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Address,
+ '2001:888888::1')
+ self.assertRaises(ipaddr.AddressValueError,
+ ipaddr.IPv4Address(1)._ip_int_from_string,
+ '1.a.2.3')
+ self.assertEqual(False, ipaddr.IPv4Network(1)._is_hostmask('1.a.2.3'))
+
+ def testGetNetwork(self):
+ self.assertEqual(int(self.ipv4.network), 16909056)
+ self.assertEqual(str(self.ipv4.network), '1.2.3.0')
+ self.assertEqual(str(self.ipv4_hostmask.network), '10.0.0.0')
+
+ self.assertEqual(int(self.ipv6.network),
+ 42540616829182469433403647294022090752)
+ self.assertEqual(str(self.ipv6.network),
+ '2001:658:22a:cafe::')
+ self.assertEqual(str(self.ipv6.hostmask),
+ '::ffff:ffff:ffff:ffff')
+
+ def testBadVersionComparison(self):
+ # These should always raise TypeError
+ v4addr = ipaddr.IPAddress('1.1.1.1')
+ v4net = ipaddr.IPNetwork('1.1.1.1')
+ v6addr = ipaddr.IPAddress('::1')
+ v6net = ipaddr.IPAddress('::1')
+
+ self.assertRaises(TypeError, v4addr.__lt__, v6addr)
+ self.assertRaises(TypeError, v4addr.__gt__, v6addr)
+ self.assertRaises(TypeError, v4net.__lt__, v6net)
+ self.assertRaises(TypeError, v4net.__gt__, v6net)
+
+ self.assertRaises(TypeError, v6addr.__lt__, v4addr)
+ self.assertRaises(TypeError, v6addr.__gt__, v4addr)
+ self.assertRaises(TypeError, v6net.__lt__, v4net)
+ self.assertRaises(TypeError, v6net.__gt__, v4net)
+
+ def testMixedTypeComparison(self):
+ v4addr = ipaddr.IPAddress('1.1.1.1')
+ v4net = ipaddr.IPNetwork('1.1.1.1/32')
+ v6addr = ipaddr.IPAddress('::1')
+ v6net = ipaddr.IPNetwork('::1/128')
+
+ self.assertFalse(v4net.__contains__(v6net))
+ self.assertFalse(v6net.__contains__(v4net))
+
+ self.assertRaises(TypeError, lambda: v4addr < v4net)
+ self.assertRaises(TypeError, lambda: v4addr > v4net)
+ self.assertRaises(TypeError, lambda: v4net < v4addr)
+ self.assertRaises(TypeError, lambda: v4net > v4addr)
+
+ self.assertRaises(TypeError, lambda: v6addr < v6net)
+ self.assertRaises(TypeError, lambda: v6addr > v6net)
+ self.assertRaises(TypeError, lambda: v6net < v6addr)
+ self.assertRaises(TypeError, lambda: v6net > v6addr)
+
+ # with get_mixed_type_key, you can sort addresses and network.
+ self.assertEqual([v4addr, v4net], sorted([v4net, v4addr],
+ key=ipaddr.get_mixed_type_key))
+ self.assertEqual([v6addr, v6net], sorted([v6net, v6addr],
+ key=ipaddr.get_mixed_type_key))
+
+ def testIpFromInt(self):
+ self.assertEqual(self.ipv4.ip, ipaddr.IPv4Network(16909060).ip)
+ self.assertRaises(ipaddr.AddressValueError,
+ ipaddr.IPv4Network, 2**32)
+ self.assertRaises(ipaddr.AddressValueError,
+ ipaddr.IPv4Network, -1)
+
+ ipv4 = ipaddr.IPNetwork('1.2.3.4')
+ ipv6 = ipaddr.IPNetwork('2001:658:22a:cafe:200:0:0:1')
+ self.assertEqual(ipv4, ipaddr.IPNetwork(int(ipv4)))
+ self.assertEqual(ipv6, ipaddr.IPNetwork(int(ipv6)))
+
+ v6_int = 42540616829182469433547762482097946625
+ self.assertEqual(self.ipv6.ip, ipaddr.IPv6Network(v6_int).ip)
+ self.assertRaises(ipaddr.AddressValueError,
+ ipaddr.IPv6Network, 2**128)
+ self.assertRaises(ipaddr.AddressValueError,
+ ipaddr.IPv6Network, -1)
+
+ self.assertEqual(ipaddr.IPNetwork(self.ipv4.ip).version, 4)
+ self.assertEqual(ipaddr.IPNetwork(self.ipv6.ip).version, 6)
+
+ if ipaddr._compat_has_real_bytes: # on python3+
+ def testIpFromPacked(self):
+ ip = ipaddr.IPNetwork
+
+ self.assertEqual(self.ipv4.ip,
+ ip(_cb('\x01\x02\x03\x04')).ip)
+ self.assertEqual(ip('255.254.253.252'),
+ ip(_cb('\xff\xfe\xfd\xfc')))
+ self.assertRaises(ValueError, ipaddr.IPNetwork, _cb('\x00' * 3))
+ self.assertRaises(ValueError, ipaddr.IPNetwork, _cb('\x00' * 5))
+ self.assertEqual(self.ipv6.ip,
+ ip(_cb('\x20\x01\x06\x58\x02\x2a\xca\xfe'
+ '\x02\x00\x00\x00\x00\x00\x00\x01')).ip)
+ self.assertEqual(ip('ffff:2:3:4:ffff::'),
+ ip(_cb('\xff\xff\x00\x02\x00\x03\x00\x04' +
+ '\xff\xff' + '\x00' * 6)))
+ self.assertEqual(ip('::'),
+ ip(_cb('\x00' * 16)))
+ self.assertRaises(ValueError, ip, _cb('\x00' * 15))
+ self.assertRaises(ValueError, ip, _cb('\x00' * 17))
+
+ def testGetIp(self):
+ self.assertEqual(int(self.ipv4.ip), 16909060)
+ self.assertEqual(str(self.ipv4.ip), '1.2.3.4')
+ self.assertEqual(str(self.ipv4_hostmask.ip), '10.0.0.1')
+
+ self.assertEqual(int(self.ipv6.ip),
+ 42540616829182469433547762482097946625)
+ self.assertEqual(str(self.ipv6.ip),
+ '2001:658:22a:cafe:200::1')
+
+ def testGetNetmask(self):
+ self.assertEqual(int(self.ipv4.netmask), 4294967040L)
+ self.assertEqual(str(self.ipv4.netmask), '255.255.255.0')
+ self.assertEqual(str(self.ipv4_hostmask.netmask), '255.0.0.0')
+ self.assertEqual(int(self.ipv6.netmask),
+ 340282366920938463444927863358058659840)
+ self.assertEqual(self.ipv6.prefixlen, 64)
+
+ def testZeroNetmask(self):
+ ipv4_zero_netmask = ipaddr.IPv4Network('1.2.3.4/0')
+ self.assertEqual(int(ipv4_zero_netmask.netmask), 0)
+ self.assertTrue(ipv4_zero_netmask._is_valid_netmask(str(0)))
+
+ ipv6_zero_netmask = ipaddr.IPv6Network('::1/0')
+ self.assertEqual(int(ipv6_zero_netmask.netmask), 0)
+ self.assertTrue(ipv6_zero_netmask._is_valid_netmask(str(0)))
+
+ def testGetBroadcast(self):
+ self.assertEqual(int(self.ipv4.broadcast), 16909311L)
+ self.assertEqual(str(self.ipv4.broadcast), '1.2.3.255')
+
+ self.assertEqual(int(self.ipv6.broadcast),
+ 42540616829182469451850391367731642367)
+ self.assertEqual(str(self.ipv6.broadcast),
+ '2001:658:22a:cafe:ffff:ffff:ffff:ffff')
+
+ def testGetPrefixlen(self):
+ self.assertEqual(self.ipv4.prefixlen, 24)
+
+ self.assertEqual(self.ipv6.prefixlen, 64)
+
+ def testGetSupernet(self):
+ self.assertEqual(self.ipv4.supernet().prefixlen, 23)
+ self.assertEqual(str(self.ipv4.supernet().network), '1.2.2.0')
+ self.assertEqual(ipaddr.IPv4Network('0.0.0.0/0').supernet(),
+ ipaddr.IPv4Network('0.0.0.0/0'))
+
+ self.assertEqual(self.ipv6.supernet().prefixlen, 63)
+ self.assertEqual(str(self.ipv6.supernet().network),
+ '2001:658:22a:cafe::')
+ self.assertEqual(ipaddr.IPv6Network('::0/0').supernet(),
+ ipaddr.IPv6Network('::0/0'))
+
+ def testGetSupernet3(self):
+ self.assertEqual(self.ipv4.supernet(3).prefixlen, 21)
+ self.assertEqual(str(self.ipv4.supernet(3).network), '1.2.0.0')
+
+ self.assertEqual(self.ipv6.supernet(3).prefixlen, 61)
+ self.assertEqual(str(self.ipv6.supernet(3).network),
+ '2001:658:22a:caf8::')
+
+ def testGetSupernet4(self):
+ self.assertRaises(ValueError, self.ipv4.supernet, prefixlen_diff=2,
+ new_prefix=1)
+ self.assertRaises(ValueError, self.ipv4.supernet, new_prefix=25)
+ self.assertEqual(self.ipv4.supernet(prefixlen_diff=2),
+ self.ipv4.supernet(new_prefix=22))
+
+ self.assertRaises(ValueError, self.ipv6.supernet, prefixlen_diff=2,
+ new_prefix=1)
+ self.assertRaises(ValueError, self.ipv6.supernet, new_prefix=65)
+ self.assertEqual(self.ipv6.supernet(prefixlen_diff=2),
+ self.ipv6.supernet(new_prefix=62))
+
+ def testIterSubnets(self):
+ self.assertEqual(self.ipv4.subnet(), list(self.ipv4.iter_subnets()))
+ self.assertEqual(self.ipv6.subnet(), list(self.ipv6.iter_subnets()))
+
+ def testFancySubnetting(self):
+ self.assertEqual(sorted(self.ipv4.subnet(prefixlen_diff=3)),
+ sorted(self.ipv4.subnet(new_prefix=27)))
+ self.assertRaises(ValueError, self.ipv4.subnet, new_prefix=23)
+ self.assertRaises(ValueError, self.ipv4.subnet,
+ prefixlen_diff=3, new_prefix=27)
+ self.assertEqual(sorted(self.ipv6.subnet(prefixlen_diff=4)),
+ sorted(self.ipv6.subnet(new_prefix=68)))
+ self.assertRaises(ValueError, self.ipv6.subnet, new_prefix=63)
+ self.assertRaises(ValueError, self.ipv6.subnet,
+ prefixlen_diff=4, new_prefix=68)
+
+ def testGetSubnet(self):
+ self.assertEqual(self.ipv4.subnet()[0].prefixlen, 25)
+ self.assertEqual(str(self.ipv4.subnet()[0].network), '1.2.3.0')
+ self.assertEqual(str(self.ipv4.subnet()[1].network), '1.2.3.128')
+
+ self.assertEqual(self.ipv6.subnet()[0].prefixlen, 65)
+
+ def testGetSubnetForSingle32(self):
+ ip = ipaddr.IPv4Network('1.2.3.4/32')
+ subnets1 = [str(x) for x in ip.subnet()]
+ subnets2 = [str(x) for x in ip.subnet(2)]
+ self.assertEqual(subnets1, ['1.2.3.4/32'])
+ self.assertEqual(subnets1, subnets2)
+
+ def testGetSubnetForSingle128(self):
+ ip = ipaddr.IPv6Network('::1/128')
+ subnets1 = [str(x) for x in ip.subnet()]
+ subnets2 = [str(x) for x in ip.subnet(2)]
+ self.assertEqual(subnets1, ['::1/128'])
+ self.assertEqual(subnets1, subnets2)
+
+ def testSubnet2(self):
+ ips = [str(x) for x in self.ipv4.subnet(2)]
+ self.assertEqual(
+ ips,
+ ['1.2.3.0/26', '1.2.3.64/26', '1.2.3.128/26', '1.2.3.192/26'])
+
+ ipsv6 = [str(x) for x in self.ipv6.subnet(2)]
+ self.assertEqual(
+ ipsv6,
+ ['2001:658:22a:cafe::/66',
+ '2001:658:22a:cafe:4000::/66',
+ '2001:658:22a:cafe:8000::/66',
+ '2001:658:22a:cafe:c000::/66'])
+
+ def testSubnetFailsForLargeCidrDiff(self):
+ self.assertRaises(ValueError, self.ipv4.subnet, 9)
+ self.assertRaises(ValueError, self.ipv6.subnet, 65)
+
+ def testSupernetFailsForLargeCidrDiff(self):
+ self.assertRaises(ValueError, self.ipv4.supernet, 25)
+ self.assertRaises(ValueError, self.ipv6.supernet, 65)
+
+ def testSubnetFailsForNegativeCidrDiff(self):
+ self.assertRaises(ValueError, self.ipv4.subnet, -1)
+ self.assertRaises(ValueError, self.ipv6.subnet, -1)
+
+ def testGetNumHosts(self):
+ self.assertEqual(self.ipv4.numhosts, 256)
+ self.assertEqual(self.ipv4.subnet()[0].numhosts, 128)
+ self.assertEqual(self.ipv4.supernet().numhosts, 512)
+
+ self.assertEqual(self.ipv6.numhosts, 18446744073709551616)
+ self.assertEqual(self.ipv6.subnet()[0].numhosts, 9223372036854775808)
+ self.assertEqual(self.ipv6.supernet().numhosts, 36893488147419103232)
+
+ def testContains(self):
+ self.assertTrue(ipaddr.IPv4Network('1.2.3.128/25') in self.ipv4)
+ self.assertFalse(ipaddr.IPv4Network('1.2.4.1/24') in self.ipv4)
+ self.assertTrue(self.ipv4 in self.ipv4)
+ self.assertTrue(self.ipv6 in self.ipv6)
+ # We can test addresses and string as well.
+ addr1 = ipaddr.IPv4Address('1.2.3.37')
+ self.assertTrue(addr1 in self.ipv4)
+ # issue 61, bad network comparison on like-ip'd network objects
+ # with identical broadcast addresses.
+ self.assertFalse(ipaddr.IPv4Network('1.1.0.0/16').__contains__(
+ ipaddr.IPv4Network('1.0.0.0/15')))
+
+ def testBadAddress(self):
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv4Network,
+ 'poop')
+ self.assertRaises(ipaddr.AddressValueError,
+ ipaddr.IPv4Network, '1.2.3.256')
+
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
+ 'poopv6')
+ self.assertRaises(ipaddr.AddressValueError,
+ ipaddr.IPv4Network, '1.2.3.4/32/24')
+ self.assertRaises(ipaddr.AddressValueError,
+ ipaddr.IPv4Network, '10/8')
+ self.assertRaises(ipaddr.AddressValueError,
+ ipaddr.IPv6Network, '10/8')
+
+
+ def testBadNetMask(self):
+ self.assertRaises(ipaddr.NetmaskValueError,
+ ipaddr.IPv4Network, '1.2.3.4/')
+ self.assertRaises(ipaddr.NetmaskValueError,
+ ipaddr.IPv4Network, '1.2.3.4/33')
+ self.assertRaises(ipaddr.NetmaskValueError,
+ ipaddr.IPv4Network, '1.2.3.4/254.254.255.256')
+ self.assertRaises(ipaddr.NetmaskValueError,
+ ipaddr.IPv4Network, '1.1.1.1/240.255.0.0')
+ self.assertRaises(ipaddr.NetmaskValueError,
+ ipaddr.IPv6Network, '::1/')
+ self.assertRaises(ipaddr.NetmaskValueError,
+ ipaddr.IPv6Network, '::1/129')
+
+ def testNth(self):
+ self.assertEqual(str(self.ipv4[5]), '1.2.3.5')
+ self.assertRaises(IndexError, self.ipv4.__getitem__, 256)
+
+ self.assertEqual(str(self.ipv6[5]),
+ '2001:658:22a:cafe::5')
+
+ def testGetitem(self):
+ # http://code.google.com/p/ipaddr-py/issues/detail?id=15
+ addr = ipaddr.IPv4Network('172.31.255.128/255.255.255.240')
+ self.assertEqual(28, addr.prefixlen)
+ addr_list = list(addr)
+ self.assertEqual('172.31.255.128', str(addr_list[0]))
+ self.assertEqual('172.31.255.128', str(addr[0]))
+ self.assertEqual('172.31.255.143', str(addr_list[-1]))
+ self.assertEqual('172.31.255.143', str(addr[-1]))
+ self.assertEqual(addr_list[-1], addr[-1])
+
+ def testEqual(self):
+ self.assertTrue(self.ipv4 == ipaddr.IPv4Network('1.2.3.4/24'))
+ self.assertFalse(self.ipv4 == ipaddr.IPv4Network('1.2.3.4/23'))
+ self.assertFalse(self.ipv4 == ipaddr.IPv6Network('::1.2.3.4/24'))
+ self.assertFalse(self.ipv4 == '')
+ self.assertFalse(self.ipv4 == [])
+ self.assertFalse(self.ipv4 == 2)
+ self.assertTrue(ipaddr.IPNetwork('1.1.1.1/32') ==
+ ipaddr.IPAddress('1.1.1.1'))
+ self.assertTrue(ipaddr.IPNetwork('1.1.1.1/24') ==
+ ipaddr.IPAddress('1.1.1.1'))
+ self.assertFalse(ipaddr.IPNetwork('1.1.1.0/24') ==
+ ipaddr.IPAddress('1.1.1.1'))
+
+ self.assertTrue(self.ipv6 ==
+ ipaddr.IPv6Network('2001:658:22a:cafe:200::1/64'))
+ self.assertTrue(ipaddr.IPNetwork('::1/128') ==
+ ipaddr.IPAddress('::1'))
+ self.assertTrue(ipaddr.IPNetwork('::1/127') ==
+ ipaddr.IPAddress('::1'))
+ self.assertFalse(ipaddr.IPNetwork('::0/127') ==
+ ipaddr.IPAddress('::1'))
+ self.assertFalse(self.ipv6 ==
+ ipaddr.IPv6Network('2001:658:22a:cafe:200::1/63'))
+ self.assertFalse(self.ipv6 == ipaddr.IPv4Network('1.2.3.4/23'))
+ self.assertFalse(self.ipv6 == '')
+ self.assertFalse(self.ipv6 == [])
+ self.assertFalse(self.ipv6 == 2)
+
+ def testNotEqual(self):
+ self.assertFalse(self.ipv4 != ipaddr.IPv4Network('1.2.3.4/24'))
+ self.assertTrue(self.ipv4 != ipaddr.IPv4Network('1.2.3.4/23'))
+ self.assertTrue(self.ipv4 != ipaddr.IPv6Network('::1.2.3.4/24'))
+ self.assertTrue(self.ipv4 != '')
+ self.assertTrue(self.ipv4 != [])
+ self.assertTrue(self.ipv4 != 2)
+
+ addr2 = ipaddr.IPAddress('2001:658:22a:cafe:200::1')
+ self.assertFalse(self.ipv6 !=
+ ipaddr.IPv6Network('2001:658:22a:cafe:200::1/64'))
+ self.assertTrue(self.ipv6 !=
+ ipaddr.IPv6Network('2001:658:22a:cafe:200::1/63'))
+ self.assertTrue(self.ipv6 != ipaddr.IPv4Network('1.2.3.4/23'))
+ self.assertTrue(self.ipv6 != '')
+ self.assertTrue(self.ipv6 != [])
+ self.assertTrue(self.ipv6 != 2)
+
+ def testSlash32Constructor(self):
+ self.assertEqual(str(ipaddr.IPv4Network('1.2.3.4/255.255.255.255')),
+ '1.2.3.4/32')
+
+ def testSlash128Constructor(self):
+ self.assertEqual(str(ipaddr.IPv6Network('::1/128')),
+ '::1/128')
+
+ def testSlash0Constructor(self):
+ self.assertEqual(str(ipaddr.IPv4Network('1.2.3.4/0.0.0.0')),
+ '1.2.3.4/0')
+
+ def testCollapsing(self):
+ # test only IP addresses including some duplicates
+ ip1 = ipaddr.IPv4Address('1.1.1.0')
+ ip2 = ipaddr.IPv4Address('1.1.1.1')
+ ip3 = ipaddr.IPv4Address('1.1.1.2')
+ ip4 = ipaddr.IPv4Address('1.1.1.3')
+ ip5 = ipaddr.IPv4Address('1.1.1.4')
+ ip6 = ipaddr.IPv4Address('1.1.1.0')
+ # check that addreses are subsumed properly.
+ collapsed = ipaddr.collapse_address_list([ip1, ip2, ip3, ip4, ip5, ip6])
+ self.assertEqual(collapsed, [ipaddr.IPv4Network('1.1.1.0/30'),
+ ipaddr.IPv4Network('1.1.1.4/32')])
+
+ # test a mix of IP addresses and networks including some duplicates
+ ip1 = ipaddr.IPv4Address('1.1.1.0')
+ ip2 = ipaddr.IPv4Address('1.1.1.1')
+ ip3 = ipaddr.IPv4Address('1.1.1.2')
+ ip4 = ipaddr.IPv4Address('1.1.1.3')
+ ip5 = ipaddr.IPv4Network('1.1.1.4/30')
+ ip6 = ipaddr.IPv4Network('1.1.1.4/30')
+ # check that addreses are subsumed properly.
+ collapsed = ipaddr.collapse_address_list([ip5, ip1, ip2, ip3, ip4, ip6])
+ self.assertEqual(collapsed, [ipaddr.IPv4Network('1.1.1.0/29')])
+
+ # test only IP networks
+ ip1 = ipaddr.IPv4Network('1.1.0.0/24')
+ ip2 = ipaddr.IPv4Network('1.1.1.0/24')
+ ip3 = ipaddr.IPv4Network('1.1.2.0/24')
+ ip4 = ipaddr.IPv4Network('1.1.3.0/24')
+ ip5 = ipaddr.IPv4Network('1.1.4.0/24')
+ # stored in no particular order b/c we want CollapseAddr to call [].sort
+ ip6 = ipaddr.IPv4Network('1.1.0.0/22')
+ # check that addreses are subsumed properly.
+ collapsed = ipaddr.collapse_address_list([ip1, ip2, ip3, ip4, ip5, ip6])
+ self.assertEqual(collapsed, [ipaddr.IPv4Network('1.1.0.0/22'),
+ ipaddr.IPv4Network('1.1.4.0/24')])
+
+ # test that two addresses are supernet'ed properly
+ collapsed = ipaddr.collapse_address_list([ip1, ip2])
+ self.assertEqual(collapsed, [ipaddr.IPv4Network('1.1.0.0/23')])
+
+ # test same IP networks
+ ip_same1 = ip_same2 = ipaddr.IPv4Network('1.1.1.1/32')
+ self.assertEqual(ipaddr.collapse_address_list([ip_same1, ip_same2]),
+ [ip_same1])
+
+ # test same IP addresses
+ ip_same1 = ip_same2 = ipaddr.IPv4Address('1.1.1.1')
+ self.assertEqual(ipaddr.collapse_address_list([ip_same1, ip_same2]),
+ [ipaddr.IPNetwork('1.1.1.1/32')])
+ ip1 = ipaddr.IPv6Network('::2001:1/100')
+ ip2 = ipaddr.IPv6Network('::2002:1/120')
+ ip3 = ipaddr.IPv6Network('::2001:1/96')
+ # test that ipv6 addresses are subsumed properly.
+ collapsed = ipaddr.collapse_address_list([ip1, ip2, ip3])
+ self.assertEqual(collapsed, [ip3])
+
+ # the toejam test
+ ip1 = ipaddr.IPAddress('1.1.1.1')
+ ip2 = ipaddr.IPAddress('::1')
+ self.assertRaises(TypeError, ipaddr.collapse_address_list,
+ [ip1, ip2])
+
+ def testSummarizing(self):
+ #ip = ipaddr.IPAddress
+ #ipnet = ipaddr.IPNetwork
+ summarize = ipaddr.summarize_address_range
+ ip1 = ipaddr.IPAddress('1.1.1.0')
+ ip2 = ipaddr.IPAddress('1.1.1.255')
+ # test a /24 is sumamrized properly
+ self.assertEqual(summarize(ip1, ip2)[0], ipaddr.IPNetwork('1.1.1.0/24'))
+ # test an IPv4 range that isn't on a network byte boundary
+ ip2 = ipaddr.IPAddress('1.1.1.8')
+ self.assertEqual(summarize(ip1, ip2), [ipaddr.IPNetwork('1.1.1.0/29'),
+ ipaddr.IPNetwork('1.1.1.8')])
+
+ ip1 = ipaddr.IPAddress('1::')
+ ip2 = ipaddr.IPAddress('1:ffff:ffff:ffff:ffff:ffff:ffff:ffff')
+ # test a IPv6 is sumamrized properly
+ self.assertEqual(summarize(ip1, ip2)[0], ipaddr.IPNetwork('1::/16'))
+ # test an IPv6 range that isn't on a network byte boundary
+ ip2 = ipaddr.IPAddress('2::')
+ self.assertEqual(summarize(ip1, ip2), [ipaddr.IPNetwork('1::/16'),
+ ipaddr.IPNetwork('2::/128')])
+
+ # test exception raised when first is greater than last
+ self.assertRaises(ValueError, summarize, ipaddr.IPAddress('1.1.1.0'),
+ ipaddr.IPAddress('1.1.0.0'))
+ # test exception raised when first and last aren't IP addresses
+ self.assertRaises(TypeError, summarize,
+ ipaddr.IPNetwork('1.1.1.0'),
+ ipaddr.IPNetwork('1.1.0.0'))
+ self.assertRaises(TypeError, summarize,
+ ipaddr.IPNetwork('1.1.1.0'), ipaddr.IPNetwork('1.1.0.0'))
+ # test exception raised when first and last are not same version
+ self.assertRaises(TypeError, summarize, ipaddr.IPAddress('::'),
+ ipaddr.IPNetwork('1.1.0.0'))
+
+ def testAddressComparison(self):
+ self.assertTrue(ipaddr.IPAddress('1.1.1.1') <=
+ ipaddr.IPAddress('1.1.1.1'))
+ self.assertTrue(ipaddr.IPAddress('1.1.1.1') <=
+ ipaddr.IPAddress('1.1.1.2'))
+ self.assertTrue(ipaddr.IPAddress('::1') <= ipaddr.IPAddress('::1'))
+ self.assertTrue(ipaddr.IPAddress('::1') <= ipaddr.IPAddress('::2'))
+
+ def testNetworkComparison(self):
+ # ip1 and ip2 have the same network address
+ ip1 = ipaddr.IPv4Network('1.1.1.0/24')
+ ip2 = ipaddr.IPv4Network('1.1.1.1/24')
+ ip3 = ipaddr.IPv4Network('1.1.2.0/24')
+
+ self.assertTrue(ip1 < ip3)
+ self.assertTrue(ip3 > ip2)
+
+ self.assertEqual(ip1.compare_networks(ip2), 0)
+ self.assertTrue(ip1._get_networks_key() == ip2._get_networks_key())
+ self.assertEqual(ip1.compare_networks(ip3), -1)
+ self.assertTrue(ip1._get_networks_key() < ip3._get_networks_key())
+
+ ip1 = ipaddr.IPv6Network('2001::2000/96')
+ ip2 = ipaddr.IPv6Network('2001::2001/96')
+ ip3 = ipaddr.IPv6Network('2001:ffff::2000/96')
+
+ self.assertTrue(ip1 < ip3)
+ self.assertTrue(ip3 > ip2)
+ self.assertEqual(ip1.compare_networks(ip2), 0)
+ self.assertTrue(ip1._get_networks_key() == ip2._get_networks_key())
+ self.assertEqual(ip1.compare_networks(ip3), -1)
+ self.assertTrue(ip1._get_networks_key() < ip3._get_networks_key())
+
+ # Test comparing different protocols.
+ # Should always raise a TypeError.
+ ipv6 = ipaddr.IPv6Network('::/0')
+ ipv4 = ipaddr.IPv4Network('0.0.0.0/0')
+ self.assertRaises(TypeError, ipv4.__lt__, ipv6)
+ self.assertRaises(TypeError, ipv4.__gt__, ipv6)
+ self.assertRaises(TypeError, ipv6.__lt__, ipv4)
+ self.assertRaises(TypeError, ipv6.__gt__, ipv4)
+
+ # Regression test for issue 19.
+ ip1 = ipaddr.IPNetwork('10.1.2.128/25')
+ self.assertFalse(ip1 < ip1)
+ self.assertFalse(ip1 > ip1)
+ ip2 = ipaddr.IPNetwork('10.1.3.0/24')
+ self.assertTrue(ip1 < ip2)
+ self.assertFalse(ip2 < ip1)
+ self.assertFalse(ip1 > ip2)
+ self.assertTrue(ip2 > ip1)
+ ip3 = ipaddr.IPNetwork('10.1.3.0/25')
+ self.assertTrue(ip2 < ip3)
+ self.assertFalse(ip3 < ip2)
+ self.assertFalse(ip2 > ip3)
+ self.assertTrue(ip3 > ip2)
+
+ # Regression test for issue 28.
+ ip1 = ipaddr.IPNetwork('10.10.10.0/31')
+ ip2 = ipaddr.IPNetwork('10.10.10.0')
+ ip3 = ipaddr.IPNetwork('10.10.10.2/31')
+ ip4 = ipaddr.IPNetwork('10.10.10.2')
+ sorted = [ip1, ip2, ip3, ip4]
+ unsorted = [ip2, ip4, ip1, ip3]
+ unsorted.sort()
+ self.assertEqual(sorted, unsorted)
+ unsorted = [ip4, ip1, ip3, ip2]
+ unsorted.sort()
+ self.assertEqual(sorted, unsorted)
+ self.assertRaises(TypeError, ip1.__lt__, ipaddr.IPAddress('10.10.10.0'))
+ self.assertRaises(TypeError, ip2.__lt__, ipaddr.IPAddress('10.10.10.0'))
+
+ # <=, >=
+ self.assertTrue(ipaddr.IPNetwork('1.1.1.1') <=
+ ipaddr.IPNetwork('1.1.1.1'))
+ self.assertTrue(ipaddr.IPNetwork('1.1.1.1') <=
+ ipaddr.IPNetwork('1.1.1.2'))
+ self.assertFalse(ipaddr.IPNetwork('1.1.1.2') <=
+ ipaddr.IPNetwork('1.1.1.1'))
+ self.assertTrue(ipaddr.IPNetwork('::1') <= ipaddr.IPNetwork('::1'))
+ self.assertTrue(ipaddr.IPNetwork('::1') <= ipaddr.IPNetwork('::2'))
+ self.assertFalse(ipaddr.IPNetwork('::2') <= ipaddr.IPNetwork('::1'))
+
+ def testStrictNetworks(self):
+ self.assertRaises(ValueError, ipaddr.IPNetwork, '192.168.1.1/24',
+ strict=True)
+ self.assertRaises(ValueError, ipaddr.IPNetwork, '::1/120', strict=True)
+
+ def testOverlaps(self):
+ other = ipaddr.IPv4Network('1.2.3.0/30')
+ other2 = ipaddr.IPv4Network('1.2.2.0/24')
+ other3 = ipaddr.IPv4Network('1.2.2.64/26')
+ self.assertTrue(self.ipv4.overlaps(other))
+ self.assertFalse(self.ipv4.overlaps(other2))
+ self.assertTrue(other2.overlaps(other3))
+
+ def testEmbeddedIpv4(self):
+ ipv4_string = '192.168.0.1'
+ ipv4 = ipaddr.IPv4Network(ipv4_string)
+ v4compat_ipv6 = ipaddr.IPv6Network('::%s' % ipv4_string)
+ self.assertEqual(int(v4compat_ipv6.ip), int(ipv4.ip))
+ v4mapped_ipv6 = ipaddr.IPv6Network('::ffff:%s' % ipv4_string)
+ self.assertNotEqual(v4mapped_ipv6.ip, ipv4.ip)
+ self.assertRaises(ipaddr.AddressValueError, ipaddr.IPv6Network,
+ '2001:1.1.1.1:1.1.1.1')
+
+ # Issue 67: IPv6 with embedded IPv4 address not recognized.
+ def testIPv6AddressTooLarge(self):
+ # RFC4291 2.5.5.2
+ self.assertEqual(ipaddr.IPAddress('::FFFF:192.0.2.1'),
+ ipaddr.IPAddress('::FFFF:c000:201'))
+ # RFC4291 2.2 (part 3) x::d.d.d.d
+ self.assertEqual(ipaddr.IPAddress('FFFF::192.0.2.1'),
+ ipaddr.IPAddress('FFFF::c000:201'))
+
+ def testIPVersion(self):
+ self.assertEqual(self.ipv4.version, 4)
+ self.assertEqual(self.ipv6.version, 6)
+
+ def testMaxPrefixLength(self):
+ self.assertEqual(self.ipv4.max_prefixlen, 32)
+ self.assertEqual(self.ipv6.max_prefixlen, 128)
+
+ def testPacked(self):
+ self.assertEqual(self.ipv4.packed,
+ _cb('\x01\x02\x03\x04'))
+ self.assertEqual(ipaddr.IPv4Network('255.254.253.252').packed,
+ _cb('\xff\xfe\xfd\xfc'))
+ self.assertEqual(self.ipv6.packed,
+ _cb('\x20\x01\x06\x58\x02\x2a\xca\xfe'
+ '\x02\x00\x00\x00\x00\x00\x00\x01'))
+ self.assertEqual(ipaddr.IPv6Network('ffff:2:3:4:ffff::').packed,
+ _cb('\xff\xff\x00\x02\x00\x03\x00\x04\xff\xff'
+ + '\x00' * 6))
+ self.assertEqual(ipaddr.IPv6Network('::1:0:0:0:0').packed,
+ _cb('\x00' * 6 + '\x00\x01' + '\x00' * 8))
+
+ def testIpStrFromPrefixlen(self):
+ ipv4 = ipaddr.IPv4Network('1.2.3.4/24')
+ self.assertEqual(ipv4._ip_string_from_prefix(), '255.255.255.0')
+ self.assertEqual(ipv4._ip_string_from_prefix(28), '255.255.255.240')
+
+ def testIpType(self):
+ ipv4net = ipaddr.IPNetwork('1.2.3.4')
+ ipv4addr = ipaddr.IPAddress('1.2.3.4')
+ ipv6net = ipaddr.IPNetwork('::1.2.3.4')
+ ipv6addr = ipaddr.IPAddress('::1.2.3.4')
+ self.assertEqual(ipaddr.IPv4Network, type(ipv4net))
+ self.assertEqual(ipaddr.IPv4Address, type(ipv4addr))
+ self.assertEqual(ipaddr.IPv6Network, type(ipv6net))
+ self.assertEqual(ipaddr.IPv6Address, type(ipv6addr))
+
+ def testReservedIpv4(self):
+ # test networks
+ self.assertEqual(True, ipaddr.IPNetwork('224.1.1.1/31').is_multicast)
+ self.assertEqual(False, ipaddr.IPNetwork('240.0.0.0').is_multicast)
+
+ self.assertEqual(True, ipaddr.IPNetwork('192.168.1.1/17').is_private)
+ self.assertEqual(False, ipaddr.IPNetwork('192.169.0.0').is_private)
+ self.assertEqual(True, ipaddr.IPNetwork('10.255.255.255').is_private)
+ self.assertEqual(False, ipaddr.IPNetwork('11.0.0.0').is_private)
+ self.assertEqual(True, ipaddr.IPNetwork('172.31.255.255').is_private)
+ self.assertEqual(False, ipaddr.IPNetwork('172.32.0.0').is_private)
+
+ self.assertEqual(True,
+ ipaddr.IPNetwork('169.254.100.200/24').is_link_local)
+ self.assertEqual(False,
+ ipaddr.IPNetwork('169.255.100.200/24').is_link_local)
+
+ self.assertEqual(True,
+ ipaddr.IPNetwork('127.100.200.254/32').is_loopback)
+ self.assertEqual(True, ipaddr.IPNetwork('127.42.0.0/16').is_loopback)
+ self.assertEqual(False, ipaddr.IPNetwork('128.0.0.0').is_loopback)
+
+ # test addresses
+ self.assertEqual(True, ipaddr.IPAddress('224.1.1.1').is_multicast)
+ self.assertEqual(False, ipaddr.IPAddress('240.0.0.0').is_multicast)
+
+ self.assertEqual(True, ipaddr.IPAddress('192.168.1.1').is_private)
+ self.assertEqual(False, ipaddr.IPAddress('192.169.0.0').is_private)
+ self.assertEqual(True, ipaddr.IPAddress('10.255.255.255').is_private)
+ self.assertEqual(False, ipaddr.IPAddress('11.0.0.0').is_private)
+ self.assertEqual(True, ipaddr.IPAddress('172.31.255.255').is_private)
+ self.assertEqual(False, ipaddr.IPAddress('172.32.0.0').is_private)
+
+ self.assertEqual(True,
+ ipaddr.IPAddress('169.254.100.200').is_link_local)
+ self.assertEqual(False,
+ ipaddr.IPAddress('169.255.100.200').is_link_local)
+
+ self.assertEqual(True,
+ ipaddr.IPAddress('127.100.200.254').is_loopback)
+ self.assertEqual(True, ipaddr.IPAddress('127.42.0.0').is_loopback)
+ self.assertEqual(False, ipaddr.IPAddress('128.0.0.0').is_loopback)
+ self.assertEqual(True, ipaddr.IPNetwork('0.0.0.0').is_unspecified)
+
+ def testReservedIpv6(self):
+
+ self.assertEqual(True, ipaddr.IPNetwork('ffff::').is_multicast)
+ self.assertEqual(True, ipaddr.IPNetwork(2**128-1).is_multicast)
+ self.assertEqual(True, ipaddr.IPNetwork('ff00::').is_multicast)
+ self.assertEqual(False, ipaddr.IPNetwork('fdff::').is_multicast)
+
+ self.assertEqual(True, ipaddr.IPNetwork('fecf::').is_site_local)
+ self.assertEqual(True, ipaddr.IPNetwork(
+ 'feff:ffff:ffff:ffff::').is_site_local)
+ self.assertEqual(False, ipaddr.IPNetwork('fbf:ffff::').is_site_local)
+ self.assertEqual(False, ipaddr.IPNetwork('ff00::').is_site_local)
+
+ self.assertEqual(True, ipaddr.IPNetwork('fc00::').is_private)
+ self.assertEqual(True, ipaddr.IPNetwork(
+ 'fc00:ffff:ffff:ffff::').is_private)
+ self.assertEqual(False, ipaddr.IPNetwork('fbff:ffff::').is_private)
+ self.assertEqual(False, ipaddr.IPNetwork('fe00::').is_private)
+
+ self.assertEqual(True, ipaddr.IPNetwork('fea0::').is_link_local)
+ self.assertEqual(True, ipaddr.IPNetwork('febf:ffff::').is_link_local)
+ self.assertEqual(False, ipaddr.IPNetwork('fe7f:ffff::').is_link_local)
+ self.assertEqual(False, ipaddr.IPNetwork('fec0::').is_link_local)
+
+ self.assertEqual(True, ipaddr.IPNetwork('0:0::0:01').is_loopback)
+ self.assertEqual(False, ipaddr.IPNetwork('::1/127').is_loopback)
+ self.assertEqual(False, ipaddr.IPNetwork('::').is_loopback)
+ self.assertEqual(False, ipaddr.IPNetwork('::2').is_loopback)
+
+ self.assertEqual(True, ipaddr.IPNetwork('0::0').is_unspecified)
+ self.assertEqual(False, ipaddr.IPNetwork('::1').is_unspecified)
+ self.assertEqual(False, ipaddr.IPNetwork('::/127').is_unspecified)
+
+ # test addresses
+ self.assertEqual(True, ipaddr.IPAddress('ffff::').is_multicast)
+ self.assertEqual(True, ipaddr.IPAddress(2**128-1).is_multicast)
+ self.assertEqual(True, ipaddr.IPAddress('ff00::').is_multicast)
+ self.assertEqual(False, ipaddr.IPAddress('fdff::').is_multicast)
+
+ self.assertEqual(True, ipaddr.IPAddress('fecf::').is_site_local)
+ self.assertEqual(True, ipaddr.IPAddress(
+ 'feff:ffff:ffff:ffff::').is_site_local)
+ self.assertEqual(False, ipaddr.IPAddress('fbf:ffff::').is_site_local)
+ self.assertEqual(False, ipaddr.IPAddress('ff00::').is_site_local)
+
+ self.assertEqual(True, ipaddr.IPAddress('fc00::').is_private)
+ self.assertEqual(True, ipaddr.IPAddress(
+ 'fc00:ffff:ffff:ffff::').is_private)
+ self.assertEqual(False, ipaddr.IPAddress('fbff:ffff::').is_private)
+ self.assertEqual(False, ipaddr.IPAddress('fe00::').is_private)
+
+ self.assertEqual(True, ipaddr.IPAddress('fea0::').is_link_local)
+ self.assertEqual(True, ipaddr.IPAddress('febf:ffff::').is_link_local)
+ self.assertEqual(False, ipaddr.IPAddress('fe7f:ffff::').is_link_local)
+ self.assertEqual(False, ipaddr.IPAddress('fec0::').is_link_local)
+
+ self.assertEqual(True, ipaddr.IPAddress('0:0::0:01').is_loopback)
+ self.assertEqual(True, ipaddr.IPAddress('::1').is_loopback)
+ self.assertEqual(False, ipaddr.IPAddress('::2').is_loopback)
+
+ self.assertEqual(True, ipaddr.IPAddress('0::0').is_unspecified)
+ self.assertEqual(False, ipaddr.IPAddress('::1').is_unspecified)
+
+ # some generic IETF reserved addresses
+ self.assertEqual(True, ipaddr.IPAddress('100::').is_reserved)
+ self.assertEqual(True, ipaddr.IPNetwork('4000::1/128').is_reserved)
+
+ def testIpv4Mapped(self):
+ self.assertEqual(ipaddr.IPAddress('::ffff:192.168.1.1').ipv4_mapped,
+ ipaddr.IPAddress('192.168.1.1'))
+ self.assertEqual(ipaddr.IPAddress('::c0a8:101').ipv4_mapped, None)
+ self.assertEqual(ipaddr.IPAddress('::ffff:c0a8:101').ipv4_mapped,
+ ipaddr.IPAddress('192.168.1.1'))
+
+ def testAddrExclude(self):
+ addr1 = ipaddr.IPNetwork('10.1.1.0/24')
+ addr2 = ipaddr.IPNetwork('10.1.1.0/26')
+ addr3 = ipaddr.IPNetwork('10.2.1.0/24')
+ addr4 = ipaddr.IPAddress('10.1.1.0')
+ self.assertEqual(addr1.address_exclude(addr2),
+ [ipaddr.IPNetwork('10.1.1.64/26'),
+ ipaddr.IPNetwork('10.1.1.128/25')])
+ self.assertRaises(ValueError, addr1.address_exclude, addr3)
+ self.assertRaises(TypeError, addr1.address_exclude, addr4)
+ self.assertEqual(addr1.address_exclude(addr1), [])
+
+ def testHash(self):
+ self.assertEqual(hash(ipaddr.IPNetwork('10.1.1.0/24')),
+ hash(ipaddr.IPNetwork('10.1.1.0/24')))
+ self.assertEqual(hash(ipaddr.IPAddress('10.1.1.0')),
+ hash(ipaddr.IPAddress('10.1.1.0')))
+ # i70
+ self.assertEqual(hash(ipaddr.IPAddress('1.2.3.4')),
+ hash(ipaddr.IPAddress(
+ long(ipaddr.IPAddress('1.2.3.4')._ip))))
+ ip1 = ipaddr.IPAddress('10.1.1.0')
+ ip2 = ipaddr.IPAddress('1::')
+ dummy = {}
+ dummy[self.ipv4] = None
+ dummy[self.ipv6] = None
+ dummy[ip1] = None
+ dummy[ip2] = None
+ self.assertTrue(self.ipv4 in dummy)
+ self.assertTrue(ip2 in dummy)
+
+ def testCopyConstructor(self):
+ addr1 = ipaddr.IPNetwork('10.1.1.0/24')
+ addr2 = ipaddr.IPNetwork(addr1)
+ addr3 = ipaddr.IPNetwork('2001:658:22a:cafe:200::1/64')
+ addr4 = ipaddr.IPNetwork(addr3)
+ addr5 = ipaddr.IPv4Address('1.1.1.1')
+ addr6 = ipaddr.IPv6Address('2001:658:22a:cafe:200::1')
+
+ self.assertEqual(addr1, addr2)
+ self.assertEqual(addr3, addr4)
+ self.assertEqual(addr5, ipaddr.IPv4Address(addr5))
+ self.assertEqual(addr6, ipaddr.IPv6Address(addr6))
+
+ def testCompressIPv6Address(self):
+ test_addresses = {
+ '1:2:3:4:5:6:7:8': '1:2:3:4:5:6:7:8/128',
+ '2001:0:0:4:0:0:0:8': '2001:0:0:4::8/128',
+ '2001:0:0:4:5:6:7:8': '2001::4:5:6:7:8/128',
+ '2001:0:3:4:5:6:7:8': '2001:0:3:4:5:6:7:8/128',
+ '2001:0:3:4:5:6:7:8': '2001:0:3:4:5:6:7:8/128',
+ '0:0:3:0:0:0:0:ffff': '0:0:3::ffff/128',
+ '0:0:0:4:0:0:0:ffff': '::4:0:0:0:ffff/128',
+ '0:0:0:0:5:0:0:ffff': '::5:0:0:ffff/128',
+ '1:0:0:4:0:0:7:8': '1::4:0:0:7:8/128',
+ '0:0:0:0:0:0:0:0': '::/128',
+ '0:0:0:0:0:0:0:0/0': '::/0',
+ '0:0:0:0:0:0:0:1': '::1/128',
+ '2001:0658:022a:cafe:0000:0000:0000:0000/66':
+ '2001:658:22a:cafe::/66',
+ '::1.2.3.4': '::102:304/128',
+ '1:2:3:4:5:ffff:1.2.3.4': '1:2:3:4:5:ffff:102:304/128',
+ '::7:6:5:4:3:2:1': '0:7:6:5:4:3:2:1/128',
+ '::7:6:5:4:3:2:0': '0:7:6:5:4:3:2:0/128',
+ '7:6:5:4:3:2:1::': '7:6:5:4:3:2:1:0/128',
+ '0:6:5:4:3:2:1::': '0:6:5:4:3:2:1:0/128',
+ }
+ for uncompressed, compressed in test_addresses.items():
+ self.assertEqual(compressed, str(ipaddr.IPv6Network(uncompressed)))
+
+ def testExplodeShortHandIpStr(self):
+ addr1 = ipaddr.IPv6Network('2001::1')
+ addr2 = ipaddr.IPv6Address('2001:0:5ef5:79fd:0:59d:a0e5:ba1')
+ self.assertEqual('2001:0000:0000:0000:0000:0000:0000:0001',
+ addr1._explode_shorthand_ip_string(str(addr1.ip)))
+ self.assertEqual('0000:0000:0000:0000:0000:0000:0000:0001',
+ ipaddr.IPv6Network('::1/128').exploded)
+ # issue 77
+ self.assertEqual('2001:0000:5ef5:79fd:0000:059d:a0e5:0ba1',
+ addr2.exploded)
+
+ def testIntRepresentation(self):
+ self.assertEqual(16909060, int(self.ipv4))
+ self.assertEqual(42540616829182469433547762482097946625, int(self.ipv6))
+
+ def testHexRepresentation(self):
+ self.assertEqual(hex(0x1020304),
+ hex(self.ipv4))
+
+ self.assertEqual(hex(0x20010658022ACAFE0200000000000001),
+ hex(self.ipv6))
+
+ # backwards compatibility
+ def testBackwardsCompability(self):
+ self.assertEqual(ipaddr.CollapseAddrList(
+ [ipaddr.IPNetwork('1.1.0.0/24'), ipaddr.IPNetwork('1.1.1.0/24')]),
+ [ipaddr.IPNetwork('1.1.0.0/23')])
+
+ self.assertEqual(ipaddr.IPNetwork('::42:0/112').AddressExclude(
+ ipaddr.IPNetwork('::42:8000/113')),
+ [ipaddr.IPNetwork('::42:0/113')])
+
+ self.assertTrue(ipaddr.IPNetwork('1::/8').CompareNetworks(
+ ipaddr.IPNetwork('2::/9')) < 0)
+
+ self.assertEqual(ipaddr.IPNetwork('1::/16').Contains(
+ ipaddr.IPNetwork('2::/16')), False)
+
+ self.assertEqual(ipaddr.IPNetwork('0.0.0.0/0').Subnet(),
+ [ipaddr.IPNetwork('0.0.0.0/1'),
+ ipaddr.IPNetwork('128.0.0.0/1')])
+ self.assertEqual(ipaddr.IPNetwork('::/127').Subnet(),
+ [ipaddr.IPNetwork('::/128'),
+ ipaddr.IPNetwork('::1/128')])
+
+ self.assertEqual(ipaddr.IPNetwork('1.0.0.0/32').Supernet(),
+ ipaddr.IPNetwork('1.0.0.0/31'))
+ self.assertEqual(ipaddr.IPNetwork('::/121').Supernet(),
+ ipaddr.IPNetwork('::/120'))
+
+ self.assertEqual(ipaddr.IPNetwork('10.0.0.2').IsRFC1918(), True)
+ self.assertEqual(ipaddr.IPNetwork('10.0.0.0').IsMulticast(), False)
+ self.assertEqual(ipaddr.IPNetwork('127.255.255.255').IsLoopback(), True)
+ self.assertEqual(ipaddr.IPNetwork('169.255.255.255').IsLinkLocal(),
+ False)
+
+ def testForceVersion(self):
+ self.assertEqual(ipaddr.IPNetwork(1).version, 4)
+ self.assertEqual(ipaddr.IPNetwork(1, version=6).version, 6)
+
+ def testWithStar(self):
+ self.assertEqual(str(self.ipv4.with_prefixlen), "1.2.3.4/24")
+ self.assertEqual(str(self.ipv4.with_netmask), "1.2.3.4/255.255.255.0")
+ self.assertEqual(str(self.ipv4.with_hostmask), "1.2.3.4/0.0.0.255")
+
+ self.assertEqual(str(self.ipv6.with_prefixlen),
+ '2001:658:22a:cafe:200::1/64')
+ # rfc3513 sec 2.3 says that ipv6 only uses cidr notation for
+ # subnets
+ self.assertEqual(str(self.ipv6.with_netmask),
+ '2001:658:22a:cafe:200::1/64')
+ # this probably don't make much sense, but it's included for
+ # compatibility with ipv4
+ self.assertEqual(str(self.ipv6.with_hostmask),
+ '2001:658:22a:cafe:200::1/::ffff:ffff:ffff:ffff')
+
+ def testNetworkElementCaching(self):
+ # V4 - make sure we're empty
+ self.assertFalse(self.ipv4._cache.has_key('network'))
+ self.assertFalse(self.ipv4._cache.has_key('broadcast'))
+ self.assertFalse(self.ipv4._cache.has_key('hostmask'))
+
+ # V4 - populate and test
+ self.assertEqual(self.ipv4.network, ipaddr.IPv4Address('1.2.3.0'))
+ self.assertEqual(self.ipv4.broadcast, ipaddr.IPv4Address('1.2.3.255'))
+ self.assertEqual(self.ipv4.hostmask, ipaddr.IPv4Address('0.0.0.255'))
+
+ # V4 - check we're cached
+ self.assertTrue(self.ipv4._cache.has_key('network'))
+ self.assertTrue(self.ipv4._cache.has_key('broadcast'))
+ self.assertTrue(self.ipv4._cache.has_key('hostmask'))
+
+ # V6 - make sure we're empty
+ self.assertFalse(self.ipv6._cache.has_key('network'))
+ self.assertFalse(self.ipv6._cache.has_key('broadcast'))
+ self.assertFalse(self.ipv6._cache.has_key('hostmask'))
+
+ # V6 - populate and test
+ self.assertEqual(self.ipv6.network,
+ ipaddr.IPv6Address('2001:658:22a:cafe::'))
+ self.assertEqual(self.ipv6.broadcast, ipaddr.IPv6Address(
+ '2001:658:22a:cafe:ffff:ffff:ffff:ffff'))
+ self.assertEqual(self.ipv6.hostmask,
+ ipaddr.IPv6Address('::ffff:ffff:ffff:ffff'))
+
+ # V6 - check we're cached
+ self.assertTrue(self.ipv6._cache.has_key('network'))
+ self.assertTrue(self.ipv6._cache.has_key('broadcast'))
+ self.assertTrue(self.ipv6._cache.has_key('hostmask'))
+
+ def testTeredo(self):
+ # stolen from wikipedia
+ server = ipaddr.IPv4Address('65.54.227.120')
+ client = ipaddr.IPv4Address('192.0.2.45')
+ teredo_addr = '2001:0000:4136:e378:8000:63bf:3fff:fdd2'
+ self.assertEqual((server, client),
+ ipaddr.IPAddress(teredo_addr).teredo)
+ bad_addr = '2000::4136:e378:8000:63bf:3fff:fdd2'
+ self.assertFalse(ipaddr.IPAddress(bad_addr).teredo)
+ bad_addr = '2001:0001:4136:e378:8000:63bf:3fff:fdd2'
+ self.assertFalse(ipaddr.IPAddress(bad_addr).teredo)
+
+ # i77
+ teredo_addr = ipaddr.IPv6Address('2001:0:5ef5:79fd:0:59d:a0e5:ba1')
+ self.assertEqual((ipaddr.IPv4Address('94.245.121.253'),
+ ipaddr.IPv4Address('95.26.244.94')),
+ teredo_addr.teredo)
+
+
+ def testsixtofour(self):
+ sixtofouraddr = ipaddr.IPAddress('2002:ac1d:2d64::1')
+ bad_addr = ipaddr.IPAddress('2000:ac1d:2d64::1')
+ self.assertEqual(ipaddr.IPv4Address('172.29.45.100'),
+ sixtofouraddr.sixtofour)
+ self.assertFalse(bad_addr.sixtofour)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/contrib/ipaddr-py/setup.py b/contrib/ipaddr-py/setup.py
new file mode 100755
index 000000000..33564320e
--- /dev/null
+++ b/contrib/ipaddr-py/setup.py
@@ -0,0 +1,36 @@
+#!/usr/bin/python
+#
+# Copyright 2008 Google Inc.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from distutils.core import setup
+
+import ipaddr
+
+
+setup(name='ipaddr',
+ maintainer='Google',
+ maintainer_email='ipaddr-py-dev@googlegroups.com',
+ version=ipaddr.__version__,
+ url='http://code.google.com/p/ipaddr-py/',
+ license='Apache License, Version 2.0',
+ classifiers=[
+ 'Development Status :: 5 - Production/Stable',
+ 'Intended Audience :: Developers',
+ 'License :: OSI Approved :: Apache Software License',
+ 'Operating System :: OS Independent',
+ 'Topic :: Internet',
+ 'Topic :: Software Development :: Libraries',
+ 'Topic :: System :: Networking'],
+ py_modules=['ipaddr'])
diff --git a/contrib/ipaddr-py/test-2to3.sh b/contrib/ipaddr-py/test-2to3.sh
new file mode 100755
index 000000000..408d665bc
--- /dev/null
+++ b/contrib/ipaddr-py/test-2to3.sh
@@ -0,0 +1,15 @@
+#!/bin/sh
+
+# Converts the python2 ipaddr files to python3 and runs the unit tests
+# with both python versions.
+
+mkdir -p 2to3output && \
+cp -f *.py 2to3output && \
+( cd 2to3output && 2to3 . | patch -p0 ) && \
+py3version=$(python3 --version 2>&1) && \
+echo -e "\nTesting with ${py3version}" && \
+python3 2to3output/ipaddr_test.py && \
+rm -r 2to3output && \
+pyversion=$(python --version 2>&1) && \
+echo -e "\nTesting with ${pyversion}" && \
+./ipaddr_test.py