1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/*
Copyright (c) 2008-2012 Red Hat, Inc. <http://www.redhat.com>
This file is part of GlusterFS.
This file is licensed to you under your choice of the GNU Lesser
General Public License, version 3 or any later version (LGPLv3 or
later), or the GNU General Public License, version 2 (GPLv2), in all
cases as published by the Free Software Foundation.
*/
#ifndef _LLIST_H
#define _LLIST_H
struct list_head {
struct list_head *next;
struct list_head *prev;
};
#define INIT_LIST_HEAD(head) \
do { \
(head)->next = (head)->prev = head; \
} while (0)
static inline void
list_add(struct list_head *new, struct list_head *head)
{
new->prev = head;
new->next = head->next;
new->prev->next = new;
new->next->prev = new;
}
static inline void
list_add_tail(struct list_head *new, struct list_head *head)
{
new->next = head;
new->prev = head->prev;
new->prev->next = new;
new->next->prev = new;
}
/* This function will insert the element to the list in a order.
Order will be based on the compare function provided as a input.
If element to be inserted in ascending order compare should return:
0: if both the arguments are equal
>0: if first argument is greater than second argument
<0: if first argument is less than second argument */
static inline void
list_add_order(struct list_head *new, struct list_head *head,
int (*compare)(struct list_head *, struct list_head *))
{
struct list_head *pos = head->prev;
while (pos != head) {
if (compare(new, pos) >= 0)
break;
/* Iterate the list in the reverse order. This will have
better efficiency if the elements are inserted in the
ascending order */
pos = pos->prev;
}
list_add(new, pos);
}
static inline void
list_del(struct list_head *old)
{
old->prev->next = old->next;
old->next->prev = old->prev;
old->next = (void *)0xbabebabe;
old->prev = (void *)0xcafecafe;
}
static inline void
list_del_init(struct list_head *old)
{
old->prev->next = old->next;
old->next->prev = old->prev;
old->next = old;
old->prev = old;
}
static inline void
list_move(struct list_head *list, struct list_head *head)
{
list_del(list);
list_add(list, head);
}
static inline void
list_move_tail(struct list_head *list, struct list_head *head)
{
list_del(list);
list_add_tail(list, head);
}
static inline int
list_empty(struct list_head *head)
{
return (head->next == head);
}
static inline void
__list_splice(struct list_head *list, struct list_head *head)
{
(list->prev)->next = (head->next);
(head->next)->prev = (list->prev);
(head)->next = (list->next);
(list->next)->prev = (head);
}
static inline void
list_splice(struct list_head *list, struct list_head *head)
{
if (list_empty(list))
return;
__list_splice(list, head);
}
/* Splice moves @list to the head of the list at @head. */
static inline void
list_splice_init(struct list_head *list, struct list_head *head)
{
if (list_empty(list))
return;
__list_splice(list, head);
INIT_LIST_HEAD(list);
}
static inline void
__list_append(struct list_head *list, struct list_head *head)
{
(head->prev)->next = (list->next);
(list->next)->prev = (head->prev);
(head->prev) = (list->prev);
(list->prev)->next = head;
}
static inline void
list_append(struct list_head *list, struct list_head *head)
{
if (list_empty(list))
return;
__list_append(list, head);
}
/* Append moves @list to the end of @head */
static inline void
list_append_init(struct list_head *list, struct list_head *head)
{
if (list_empty(list))
return;
__list_append(list, head);
INIT_LIST_HEAD(list);
}
static inline int
list_is_last(struct list_head *list, struct list_head *head)
{
return (list->next == head);
}
static inline int
list_is_singular(struct list_head *head)
{
return !list_empty(head) && (head->next == head->prev);
}
/**
* list_replace - replace old entry by new one
* @old : the element to be replaced
* @new : the new element to insert
*
* If @old was empty, it will be overwritten.
*/
static inline void
list_replace(struct list_head *old, struct list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
static inline void
list_replace_init(struct list_head *old, struct list_head *new)
{
list_replace(old, new);
INIT_LIST_HEAD(old);
}
/**
* list_rotate_left - rotate the list to the left
* @head: the head of the list
*/
static inline void
list_rotate_left(struct list_head *head)
{
struct list_head *first;
if (!list_empty(head)) {
first = head->next;
list_move_tail(first, head);
}
}
#define list_entry(ptr, type, member) \
((type *)((char *)(ptr) - (unsigned long)(&((type *)0)->member)))
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)
#define list_last_entry(ptr, type, member) list_entry((ptr)->prev, type, member)
#define list_next_entry(pos, member) \
list_entry((pos)->member.next, typeof(*(pos)), member)
#define list_prev_entry(pos, member) \
list_entry((pos)->member.prev, typeof(*(pos)), member)
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member))
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member), \
n = list_entry(pos->member.prev, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.prev, typeof(*n), member))
/*
* This list implementation has some advantages, but one disadvantage: you
* can't use NULL to check whether you're at the head or tail. Thus, the
* address of the head has to be an argument for these macros.
*/
#define list_next(ptr, head, type, member) \
(((ptr)->member.next == head) \
? NULL \
: list_entry((ptr)->member.next, type, member))
#define list_prev(ptr, head, type, member) \
(((ptr)->member.prev == head) \
? NULL \
: list_entry((ptr)->member.prev, type, member))
#endif /* _LLIST_H */
|